Human-Agent Interactions: Does Accountability Matter in Interactive Control Automation?

Author(s):  
Pouria Salehi ◽  
Erin K. Chiou ◽  
Adam Wilkins

In human-automation systems, where high situation awareness is associated with better decision-making, understanding accountability may be crucial to preventing automation complacency. In supervisory control automation, there is some evidence that accountability increases human-automation performance; however, with increasingly intelligent automated agents, human-agent work relationships may resemble more interactive control compared to supervisory control. We investigate the effects of social accountability in a simulated joint task environment and hypothesize that people under an accountability condition would cooperate more with an automated agent than people under a non-accountability condition, in a shared cognitive task. Results from our study support this hypothesis. However, for the accountability group, people’s performance in terms of units processed was lower, and this group also self-reported lower performance and attentional control, with higher frustration. These findings indicate that accountability may slow the decision-making process through added pressure, with some costs to short term efficiency.

Author(s):  
Nicolette M. McGeorge ◽  
Stephanie Kane ◽  
Chris Muller

The battlespace is a volatile and complex environment in which tactical commanders face cognitively challenging responsibilities, compounded with the increased complexity of emerging cyber warfare. It is critical that tactical commanders gain adequate situation awareness for effective decision making to achieve mission success. While current tools enable distribution of large quantities and types of information, they do not adequately support the underlying cognitive work and information needs of tactical commanders. We performed a domain analysis using Cognitive Task Analysis methods, developing a prototypical operational scenario representative of current and envisioned environments, centered on a cyber-attack. Using this analysis, we identified cognitive and information requirements for information displays that support effective tactical decision making. Tactical commanders need to understand dynamic situations in the field, understand the viable courses of actions, know how their mission fits into the larger mission, and communicate with their company subordinates and higher echelons of command.


Author(s):  
Cheryl A. Bolstad ◽  
Jennifer M. Riley ◽  
Debra G. Jones ◽  
Mica R. Endsley

A greater understanding of team cognitive processes can be facilitated by identifying the individual goals of the team members and their situation awareness (SA) requirements. In some environments, such as military operations, the shear complexity, size, and composition of the team make this research quite challenging. Using a form of cognitive task analysis, we have developed an approach to address some of these team issues. In this paper we discuss the use of goal directed cognitive task analysis (GDTA) to obtain an accurate depiction of the SA requirements and key goals for several brigade officers. We further discuss how this information is being used to address team issues such as designing systems for enhancing team performance and decision making with Army brigade officers.


2011 ◽  
Author(s):  
Daniel Gartenberg ◽  
Malcolm McCurry ◽  
Greg Trafton

Author(s):  
I. М. Mikhaylenko ◽  
V. N. Timoshin

The transition to "intellectual" agriculture is the main vector of modernization of the agricultural sector of the economy. It is based on integrated automation and robotization of production, the use of automated decision-making systems. This is inevitably accompanied by a significant increase in data flow from sensors, monitoring systems, meteorological stations, drones, satellites and other external systems. Farm management has the opportunity to use various online applications for accurate recommendations and making various kinds of management decisions. In this regard, the most effective use of cloud information technologies, allowing implementing the most complex information and technical level of automation systems for management of agricultural technologies. The purpose of this work is to test the approach to creating expert management decision support systems (DSS) through the knowledge base (KB), formed in the cloud information system. For this, we consider an example of constructing a DSS for choosing the optimal date for preparing forage from perennial grasses. A complete theoretical and algorithmic database of the analytical DSS implemented in the data processing center of the cloud information system is given. On its basis, a KB is formed for a variety of different decision-making conditions. This knowledge base is transmitted to the local DSS. To make decisions about the optimal dates for the preparation of the local DSS, two variants of algorithms are used. The first option is based on management models, and the second uses the pattern recognition method. The approbation of the algorithms was carried out according to the BZ from 50 cases. According to the results of testing, the method of pattern recognition proved to be more accurate, which provides a more flexible adjustment of the situation on the local DSS to a similar situation in the KB. The considered technique can be extended to other crops.


2019 ◽  
Author(s):  
Debbie Marianne Yee ◽  
Sarah L Adams ◽  
Asad Beck ◽  
Todd Samuel Braver

Motivational incentives play an influential role in value-based decision-making and cognitive control. A compelling hypothesis in the literature suggests that the brain integrates the motivational value of diverse incentives (e.g., motivational integration) into a common currency value signal that influences decision-making and behavior. To investigate whether motivational integration processes change during healthy aging, we tested older (N=44) and younger (N=54) adults in an innovative incentive integration task paradigm that establishes dissociable and additive effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. The results reveal that motivational incentives improve cognitive task performance in both older and younger adults, providing novel evidence demonstrating that age-related cognitive control deficits can be ameliorated with sufficient incentive motivation. Additional analyses revealed clear age-related differences in motivational integration. Younger adult task performance was modulated by both monetary and liquid incentives, whereas monetary reward effects were more gradual in older adults and more strongly impacted by trial-by-trial performance feedback. A surprising discovery was that older adults shifted attention from liquid valence toward monetary reward throughout task performance, but younger adults shifted attention from monetary reward toward integrating both monetary reward and liquid valence by the end of the task, suggesting differential strategic utilization of incentives. Together these data suggest that older adults may have impairments in incentive integration, and employ different motivational strategies to improve cognitive task performance. The findings suggest potential candidate neural mechanisms that may serve as the locus of age-related change, providing targets for future cognitive neuroscience investigations.


Author(s):  
A. V. Smirnov ◽  
T. V. Levashova

Introduction: Socio-cyber-physical systems are complex non-linear systems. Such systems display emergent properties. Involvement of humans, as a part of these systems, in the decision-making process contributes to overcoming the consequences of the emergent system behavior, since people can use their experience and intuition, not just the programmed rules and procedures.Purpose: Development of models for decision support in socio-cyber-physical systems.Results: A scheme of decision making in socio-cyber-physical systems, a conceptual framework of decision support in these systems, and stepwise decision support models have been developed. The decision-making scheme is that cybernetic components make their decisions first, and if they cannot do this, they ask humans for help. The stepwise models support the decisions made by components of socio-cyber-physical systems at the conventional stages of the decision-making process: situation awareness, problem identification, development of alternatives, choice of a preferred alternative, and decision implementation. The application of the developed models is illustrated through a scenario for planning the execution of a common task for robots.Practical relevance: The developed models enable you to design plans on solving tasks common for system components or on achievement of common goals, and to implement these plans. The models contribute to overcoming the consequences of the emergent behavior of socio-cyber-physical systems, and to the research on machine learning and mobile robot control.


2009 ◽  
Author(s):  
Robert J. Pleban ◽  
Jennifer S. Tucker ◽  
Vanessa Johnson Katie /Gunther ◽  
Thomas R. Graves

Author(s):  
Guillaume Dubuisson Duplessis ◽  
Caroline Langlet ◽  
Chloé Clavel ◽  
Frédéric Landragin

Sign in / Sign up

Export Citation Format

Share Document