A Comparison of Two Head up Display Formats Used to Fly Curved Instrument Approaches

Author(s):  
John M. Reising ◽  
Kristen K. Liggett ◽  
Thomas J. Solz ◽  
David C. Hartsock

With the advent of the Global Positioning System (GPS), pilots will be able to fly curved instrument approaches. Since current head up display (HUD) symbology was not specifically designed to present this curved information, a study was conducted to determine the most effective set of HUD symbology to assist pilots in flying curved approaches. The military standard HUD symbology was compared with the Pathway HUD format. Dependent measures collected for the comparison were root mean square (RMS) course deviations, RMS altitude deviations, and RMS airspeed deviations. Results showed that there was a significant difference in pilot performance for all dependent measures – subjects performed better using the Pathway HUD format than the standard HUD symbology in all cases. Pilots comments attributed the advantage of flying the Pathway HUD format to the fact that they could see their route in the form of a highway from their present position to a point 45 seconds into the future. This allowed them to anticipate necessary control movements.

Author(s):  
Igor Junio de Oliveira Custódio ◽  
Gibson Moreira Praça ◽  
Leandro Vinhas de Paula ◽  
Sarah da Glória Teles Bredt ◽  
Fabio Yuzo Nakamura ◽  
...  

This study aimed to analyze the intersession reliability of global positioning system (GPS-based) distances and accelerometer-based (acceleration) variables in small-sided soccer games (SSG) with and without the offside rule, as well as compare variables between the tasks. Twenty-four high-level U-17 soccer athletes played 3 versus 3 (plus goalkeepers) SSG in two formats (with and without the offside rule). SSG were performed on eight consecutive weeks (4 weeks for each group), twice a week. The physical demands were recorded using a GPS with an embedded triaxial accelerometer. GPS-based variables (total distance, average speed, and distances covered at different speeds) and accelerometer-based variables (Player Load™, root mean square of the acceleration recorded in each movement axis, and the root mean square of resultant acceleration) were calculated. Results showed that the inclusion of the offside rule reduced the total distance covered (large effect) and the distances covered at moderate speed zones (7–12.9 km/h – moderate effect; 13–17.9 km/h – large effect). In both SSG formats, GPS-based variables presented good to excellent reliability (intraclass correlation coefficients – ICC > 0.62) and accelerometer-based variables presented excellent reliability (ICC values > 0.89). Based on the results of this study, the offside rule decreases the physical demand of 3 versus 3 SSG and the physical demands required in these SSG present high intersession reliability.


2021 ◽  
pp. 073346482110548
Author(s):  
Jane Chung ◽  
Joseph Boyle ◽  
David C. Wheeler

This study aimed to examine the feasibility of using global positioning system (GPS) watches to examine relationships between GPS-based life-space mobility (LSM) metrics and self-report LSM and health measures (physical, psychological, and cognitive function) among older adults. Thirty participants wore a Fitbit Surge for 3 days. Eight spatial and temporal LSM measures were derived from GPS data. About 90% of in-home movement speeds were zero, indicating the sedentary lifestyle, but they made some active out-of-home trips as the total distance traveled and size of movement area indicated. There was a significant difference in total distance traveled and 95th percentile of movement speed between mild cognitive and intact cognition groups. GPS-based higher proportion of out-of-home time was significantly associated with greater functional fitness. Greater GPS use hours were significantly associated with higher cognition. These findings suggest the potential of GPS watches to continuously monitor changes in functional health to inform prevention efforts.


1982 ◽  
Vol 36 (1) ◽  
pp. 9-28 ◽  
Author(s):  
David E. Wells ◽  
Demitris Delikaraoglou ◽  
Petr Vaníč

The principles of operation of the NAVSTAR/GPS system are described within the context of the more familiar shore-based radionavigation systems, and of the Transit satellite navigation system. The present GPS satellite constellation of up to six prototype satellites, and the eventual constellation of up to 18 operational satellites are described. Some details of GPS signal structure, receiver operation, and error models are given. Results of our simulations of 1980 GPS marine navigation performance off eastern Canada are presented. These indicate GPS is presently capable of providing 150 m or better real-time positioning for about 11 hours a day in this region. GPS performance in the future is discussed.


2009 ◽  
Vol 5 (S261) ◽  
pp. 22-30 ◽  
Author(s):  
Neil Ashby ◽  
Robert A. Nelson

AbstractRelativistic effects play an important role in the performance of the Global Positioning System (GPS) and in world-wide time comparisons. The GPS has provided a model for algorithms that take relativistic effects into account. In the future exploration of space, analogous considerations will be necessary for the dissemination of time and for navigation. We discuss relativistic effects that are important for a navigation system such as at Mars. We describe relativistic principles and effects that are essential for navigation systems, and apply them to navigation satellites carrying atomic clocks in orbit about Mars, and time transfer between Mars and Earth. It is shown that, as in the GPS, relativistic effects are not negligible.


2019 ◽  
Vol 94 ◽  
pp. 01019
Author(s):  
Khomsin ◽  
Ira Mutiara Anjasmara ◽  
Danar Guruh Pratomo ◽  
Wahyu Ristanto

Global Navigation Satellite System called GNSS is a term used for the entire global navigation that already operate or are in the planning for the future. Some of the satellite that can be used are GPS (Global Positioning System) operated by USA, GLONASS (Global Navigation Satellite System) operated by Rusia and BeiDou/Compass operated by China. Many errors and biases that occur when measuring with GNSS in the field. Theoritically, there are some errors and biases that can be eliminated or subtracted by strength of satellite geometric. One factor to get a good satellite geometric is to increase the number of satellites received by receiver. In general, the more number of satellites received, the better the geometric satellites received by receivers. The development of receiver technology is currently able to capture GPS, GLONASS and BeiDou signals at one time. Thus the receiver can receive many satellites and finally the shape of geometric satellite becomes better. HiTarget V30 is one of the latest GNSS technology on the market today. This receiver is capable of receiving GPS signals, GLONASS and BeiDou at one time of observation. This research will compare the accuracy of positioning using GPS, GLONASS and BeiDou satellite.


2010 ◽  
Vol 61 (5) ◽  
pp. 389 ◽  
Author(s):  
M. G. Trotter ◽  
D. W. Lamb ◽  
G. E. Donald ◽  
D. A. Schneider

Efficiently measuring and mapping green herbage mass using remote sensing devices offers substantial potential benefits for improved management of grazed pastures over space and time. Several techniques and instruments have been developed for estimating herbage mass, however, they face similar limitations in terms of their ability to distinguish green and senescent material and their use over large areas. In this study we explore the application of an active, near infrared and red reflectance sensor to quantify and map pasture herbage mass using a range of derived spectral indices. The Soil Adjusted Vegetation Index offered the best correlation with green dry matter (GDM), with a root mean square error of prediction of 288 kg/ha. The calibrated sensor was integrated with a Global Positioning System on a 4-wheel motor bike to map green herbage mass. An evaluation of representative, truncated transects indicated the potential to conduct rapid assessments of the GDM in a paddock, without the need for full paddock surveys.


2020 ◽  
Vol 24 (3) ◽  
pp. 443-448
Author(s):  
O.J. Nnamani ◽  
V.A. Ijaware

The emergence of the Global Positioning System (GPS) receiver over the years has afforded the avenue to acquire data from various geospatial locations. This paper analyses and compares the accuracy of point positions collected using three Global Positioning System (GPS) receivers— South H66/H88, Sokkia radian IS, and ProMark 3. A field study was conducted on 5 control points within the Federal University of Technology Akure (FUTA) Campus. The One-way ANOVA test performed for the coordinates obtained from the three GPS receivers at an alpha level of 0.05 using SPSS version 16 reveals no statistically significant difference between the coordinates. Analysis of the result shows that South GPS, Sokkia GPS, and ProMark GPS receivers had horizontal misclosure values of 0.1337, 0.1625 and 0.2425 respectively, making South GPS best in obtaining accurate information onhorizontal positions. For the vertical position, misclosure values of 0.0902, 0.2336, and 0.2771 respectively were obtained for the Three GPS receivers, thereby revealing that Sokkia GPS performed optimally in obtaining heights above the ellipsoid. However, as a combination of horizontal and  vertical positions (3-Dimension), Sokkia GPS performed best while ProMark GPS performed averagely and South GPS performed least. This study shows that any of the three GPS receivers can provide reasonable accurate geographic data. However, a definite conclusion remains that the selection of an optimal GPS receiver in this study for any project will largely depend upon the user’s needs and project requirements as the significant variation observed in the height coordinates should be further investigated. Keywords: GPS Receivers, Accuracy, Position Determination, GPS Coordinates


Author(s):  
Gopal Kochhar ◽  

This paper gives an brief introduction of global positioning system, its generations, the future and progressions that are attained by the GPS and tracking systems. The latest usage and the comparative study of the GPS satellites that are launched and are operational till date.


INTI TALAFA ◽  
2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Yaman Khaeruzzaman

Seiring dengan pesatnya kemajuan teknologi saat ini, kebutuhan manusia menjadi lebih beragam, termasuk kebutuhan akan informasi. Tidak hanya media informasinya yang semakin beragam, jenis informasi yang dibutuhkan juga semakin beragam, salah satunya adalah kebutuhan informasi akan posisi kita terhadap lingkungan sekitar. Untuk memenuhi kebutuhan itu sebuah sistem pemosisi diciptakan. Sistem pemosisi yang banyak digunakan saat ini cenderung berfokus pada lingkup ruang yang besar (global) padahal, dalam lingkup ruang yang lebih kecil (lokal) sebuah sistem pemosisi juga diperlukan, seperti di ruang-ruang terbuka umum (taman atau kebun), ataupun dalam sebuah bangunan. Sistem pemosisi lokal yang ada saat ini sering kali membutuhkan infrastruktur yang mahal dalam pembangunannya. Aplikasi Pemosisi Lokal Berbasis Android dengan Menggunakan GPS ini adalah sebuah aplikasi yang dibangun untuk memenuhi kebutuhan pengguna akan informasi lokasi dan posisi mereka terhadap lingkungan di sekitarnya dalam lingkup ruang yang lebih kecil (lokal) dengan memanfaatkan perangkat GPS (Global Positioning System) yang telah tertanam dalam perangkat smartphone Android agar infrastruktur yang dibutuhkan lebih efisien. Dalam implementasinya, Aplikasi Pemosisi Lokal ini bertindak sebagai klien dengan dukungan sebuah Database Server yang berfungsi sebagai media penyimpanan data serta sumber referensi informasi yang dapat diakses melalui jaringan internet sehingga tercipta sebuah sistem yang terintegrasi secara global. Kata kunci: aplikasi, informasi, pemosisi, GPS.


Sign in / Sign up

Export Citation Format

Share Document