Assessing Sleep Architecture With Polysomnography During Posttraumatic Amnesia After Traumatic Brain Injury: A Pilot Study

2021 ◽  
pp. 154596832110112
Author(s):  
Bianca Fedele ◽  
Dean McKenzie ◽  
Gavin Williams ◽  
Robert Giles ◽  
John Olver

Background Early-onset sleep disturbance is common following moderate to severe traumatic brain injury (TBI) and often emerges while patients are in posttraumatic amnesia (PTA). However, sleep disruptions during this subacute recovery phase are not well-defined, and research often utilizes indirect measures (actigraphy) that quantify sleep based on activity. This study aims to examine sleep macro-architecture and sleep quality directly with ambulatory polysomnography (PSG) and measure endogenous salivary melatonin levels for patients experiencing PTA following moderate to severe TBI. Method Participants were recruited from an inpatient TBI rehabilitation unit. Nighttime PSG was administered at the patient’s bedside. Two saliva specimens were collected for melatonin testing on a separate evening (24:00 and 06:00 hours) using melatonin hormone profile test kits. Results Of 27 patients in whom PSG was recorded, the minimum required monitoring time occurred in n =17 (adherence: 63%) at a median of 37.0 days (quartile 1 [Q1] to quartile 3 [Q3]: 21.5-50.5) postinjury. Median non–rapid eye movement (NREM) and REM sleep proportions were similar to normal estimates. Slow-wave sleep was reduced and absent in 35.3% of patients. Sleep periods appeared fragmented, and median sleep efficiency was reduced (63.4%; Q1-Q3: 55.1-69.2). Median melatonin levels at both timepoints were outside the normal range of values specified for this test (from Australian Clinical Labs). Conclusion This study reports that ambulatory PSG and salivary melatonin assessment are feasible for patients experiencing PTA and offers new insight into the extent of sleep disturbance. Further research is necessary to understand associations between PTA and sleep disturbance.

2010 ◽  
Vol 16 (2) ◽  
pp. 335-341 ◽  
Author(s):  
STEPHEN R. McCAULEY ◽  
CLAUDIA PEDROZA ◽  
SANDRA B. CHAPMAN ◽  
LORI G. COOK ◽  
GILLIAN HOTZ ◽  
...  

AbstractThere are very few studies investigating remediation of event-based prospective memory (EB-PM) impairments following traumatic brain injury (TBI). To address this, we used 2 levels of motivational enhancement (dollarsvs.pennies) to improve EB-PM in children with moderate to severe TBI in the subacute recovery phase. Children with orthopedic injuries (OI;n= 61), moderate (n= 28), or severe (n= 30) TBI were compared. Significant effects included Group × Motivation Condition (F(2, 115) = 3.73,p< .03). The OI (p< .002) and moderate TBI (p< .03) groups performed significantly better under the high-versuslow-incentive condition; however, the severe TBI group failed to demonstrate improvement (p= .38). EB-PM performance was better in adolescents compared to younger children (p< .02). These results suggest that EB-PM can be significantly improved in the subacute phase with this level ofmonetaryincentives in children with moderate, but not severe, TBI. Other strategies to improve EB-PM in these children at a similar point in recovery remain to be identified and evaluated. (JINS, 2010,16, 335–341.)


2021 ◽  
Vol 36 (6) ◽  
pp. 1166-1166
Author(s):  
Andy E Cancelliere ◽  
Melanie A Mascarenhas

Abstract Objective To compare neurocognitive outcomes between 3 traumatic brain injury (TBI) groups (mild, moderate, severe) across 3 TBI classification systems: Glasgow Coma Scale (GCS) and Russell (mild &lt;1 hour, moderate &lt;24 hours and severe &gt;24 hours) and the modified (mild &lt;24 hours, moderate &lt; one week and severe &gt; one week) posttraumatic amnesia (PTA) systems. Method Private practice archival data were reviewed for ambulance/hospital documentation of lowest GCS and PTA duration. Exclusion criteria included ESL and failed tests of engagement. Tests included WAIS, WMS, WRAT, Halstead Reitan etc. Results There were 91 patients (16 mild, 30 moderate and 45 severe); 45 were male. Mean age and education was 30.9 and 12.6. Russell PTA classification yielded significant differences (t-tests) between mild and moderate TBI on 8 of 46 tests/measures and 13 differences in moderate versus severe and 24 differences in mild versus severe TBI. Differences were always severe &gt; moderate &gt; mild impairment, with most in psychomotor speed, memory, working memory and executive/frontal functions consistent with TBI. The modified PTA classification yielded 2 significant differences between mild and moderate, 6 differences between moderate and severe and 22 differences between mild and severe TBI. GCS yielded 0 differences between mild and moderate, 7 differences between moderate and severe and 14 differences between mild and severe TBI. The modified PTA and GCS reduced moderate TBI numbers and some differences were opposite expectations. Conclusions Russell PTA was superior to the modified PTA system and GCS in separation/discrimination (without reversals) and maintenance of moderate TBI as a substantive category.


2019 ◽  
Author(s):  
Emily L. Dennis ◽  
Karen Caeyenberghs ◽  
Robert F. Asarnow ◽  
Talin Babikian ◽  
Brenda Bartnik-Olson ◽  
...  

Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population; however, research in this population lags behind research in adults. This may be due, in part, to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. Specific developmental issues also warrant attention in studies of children, and the ever-changing context of childhood and adolescence may require larger sample sizes than are commonly available to adequately address remaining questions related to TBI. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate-Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis. In this paper we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. We conclude with recommendations for future research in this field of study.


2021 ◽  
Vol 11 (8) ◽  
pp. 1044
Author(s):  
Cristina Daia ◽  
Cristian Scheau ◽  
Aura Spinu ◽  
Ioana Andone ◽  
Cristina Popescu ◽  
...  

Background: We aimed to assess the effects of modulated neuroprotection with intermittent administration in patients with unresponsive wakefulness syndrome (UWS) after severe traumatic brain injury (TBI). Methods: Retrospective analysis of 60 patients divided into two groups, with and without neuroprotective treatment with Actovegin, Cerebrolysin, pyritinol, L-phosphothreonine, L-glutamine, hydroxocobalamin, alpha-lipoic acid, carotene, DL-α-tocopherol, ascorbic acid, thiamine, pyridoxine, cyanocobalamin, Q 10 coenzyme, and L-carnitine alongside standard treatment. Main outcome measures: Glasgow Coma Scale (GCS) after TBI, Extended Glasgow Coma Scale (GOS E), Disability Rankin Scale (DRS), Functional Independence Measurement (FIM), and Montreal Cognitive Assessment (MOCA), all assessed at 1, 3, 6, 12, and 24 months after TBI. Results: Patients receiving neuroprotective treatment recovered more rapidly from UWS than controls (p = 0.007) passing through a state of minimal consciousness and gradually progressing until the final evaluation (p = 0.000), towards a high cognitive level MOCA = 22 ± 6 points, upper moderate disability GOS-E = 6 ± 1, DRS = 6 ± 4, and an assisted gait, FIM =101 ± 25. The improvement in cognitive and physical functioning was strongly correlated with lower UWS duration (−0.8532) and higher GCS score (0.9803). Conclusion: Modulated long-term neuroprotection may be the therapeutic key for patients to overcome UWS after severe TBI.


2004 ◽  
Vol 19 (5) ◽  
pp. 378-390 ◽  
Author(s):  
Omar Mahmood ◽  
Lisa J. Rapport ◽  
Robin A. Hanks ◽  
Norman L. Fichtenberg

2017 ◽  
Vol 32 (5) ◽  
pp. 692-704 ◽  
Author(s):  
Camille Chesnel ◽  
Claire Jourdan ◽  
Eleonore Bayen ◽  
Idir Ghout ◽  
Emmanuelle Darnoux ◽  
...  

Objective: To evaluate the patient’s awareness of his or her difficulties in the chronic phase of severe traumatic brain injury (TBI) and to determine the factors related to poor awareness. Design/Setting/Subjects: This study was part of a larger prospective inception cohort study of patients with severe TBI in the Parisian region (PariS-TBI study). Intervention/Main measures: Evaluation was carried out at four years and included the Brain Injury Complaint Questionnaire (BICoQ) completed by the patient and his or her relative as well as the evaluation of impairments, disability and quality of life. Results: A total of 90 patient-relative pairs were included. Lack of awareness was measured using the unawareness index that corresponded to the number of discordant results between the patient and relative in the direction of under evaluation of difficulties by the patient. The only significant relationship found with lack of awareness was the subjective burden perceived by the relative (Zarit Burden Inventory) ( r = 0.5; P < 0.00001). There was no significant relationship between lack of awareness and injury severity, pre-injury socio-demographic data, cognitive impairments, mood disorders, functional independence (Barthel index), global disability (Glasgow Outcome Scale), return to work at four years or quality of life (Quality Of Life after Brain Injury scale (QOLIBRI)). Conclusion: Lack of awareness four years post severe TBI was not related to the severity of the initial trauma, sociodemographic data, the severity of impairments, limitations of activity and participation, or the patient’s quality of life. However, poor awareness did significantly influence the weight of the burden perceived by the relative.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e047305
Author(s):  
Susan Alcock ◽  
Divjeet Batoo ◽  
Sudharsana Rao Ande ◽  
Rob Grierson ◽  
Marco Essig ◽  
...  

IntroductionSevere traumatic brain injury (TBI) is a catastrophic neurological condition with significant economic burden. Early in-hospital mortality (<48 hours) with severe TBI is estimated at 50%. Several clinical examinations exist to determine brain death; however, most are difficult to elicit in the acute setting in patients with severe TBI. Having a definitive assessment tool would help predict early in-hospital mortality in this population. CT perfusion (CTP) has shown promise diagnosing early in-hospital mortality in patients with severe TBI and other populations. The purpose of this study is to validate admission CTP features of brain death relative to the clinical examination outcome for characterizing early in-hospital mortality in patients with severe TBI.Methods and analysisThe Early Diagnosis of Mortality using Admission CT Perfusion in Severe Traumatic Brain Injury Patients study, is a prospective cohort study in patients with severe TBI funded by a grant from the Canadian Institute of Health Research. Adults aged 18 or older, with evidence of a severe TBI (Glasgow Coma Scale score ≤8 before initial resuscitation) and, on mechanical ventilation at the time of imaging are eligible. Patients will undergo CTP at the time of first imaging on their hospital admission. Admission CTP compares with the reference standard of an accepted bedside clinical assessment for brainstem function. Deferred consent will be used. The primary outcome is a binary outcome of mortality (dead) or survival (not dead) in the first 48 hours of admission. The planned sample size for achieving a sensitivity of 75% and a specificity of 95% with a CI of ±5% is 200 patients.Ethics and disseminationThis study has been approved by the University of Manitoba Health Research Ethics Board. The findings from our study will be disseminated through peer-reviewed journals and presentations at local rounds, national and international conferences. The public will be informed through forums at the end of the study.Trial registration numberNCT04318665


2013 ◽  
Vol 14 ◽  
pp. e109
Author(s):  
Y. Dong ◽  
P. Sheng ◽  
W. Tong ◽  
Z. Li ◽  
D. Xu ◽  
...  

2015 ◽  
Vol 122 (1) ◽  
pp. 211-218 ◽  
Author(s):  
Nils Petter Rundhaug ◽  
Kent Gøran Moen ◽  
Toril Skandsen ◽  
Kari Schirmer-Mikalsen ◽  
Stine B. Lund ◽  
...  

OBJECT The influence of alcohol is assumed to reduce consciousness in patients with traumatic brain injury (TBI), but research findings are divergent. The aim of this investigation was to study the effects of different levels of blood alcohol concentration (BAC) on the Glasgow Coma Scale (GCS) scores in patients with moderate and severe TBI and to relate the findings to brain injury severity based on the admission CT scan. METHODS In this cohort study, 265 patients (age range 16–70 years) who were admitted to St. Olavs University Hospital with moderate and severe TBI during a 7-year period were prospectively registered. Of these, 217 patients (82%) had measured BAC. Effects of 4 BAC groups on GCS score were examined with ordinal logistic regression analyses, and the GCS scores were inverted to give an OR > 1. The Rotterdam CT score based on admission CT scan was used to adjust for brain injury severity (best score 1 and worst score 6) by stratifying patients into 2 brain injury severity groups (Rotterdam CT scores of 1–3 and 4–6). RESULTS Of all patients with measured BAC, 91% had intracranial CT findings and 43% had BAC > 0 mg/dl. The median GCS score was lower in the alcohol-positive patients (6.5, interquartile range [IQR] 4–10) than in the alcohol-negative patients (9, IQR 6–13; p < 0.01). No significant differences were found between alcohol-positive and alcohol-negative patients regarding other injury severity variables. Increasing BAC was a significant predictor of lower GCS score in a dose-dependent manner in age-adjusted analyses, with OR 2.7 (range 1.4–5.0) and 3.2 (range 1.5–6.9) for the 2 highest BAC groups (p < 0.01). Subgroup analyses showed an increasing effect of BAC group on GCS scores in patients with Rotterdam CT scores of 1–3: OR 3.1 (range 1.4–6.6) and 6.7 (range 2.7–16.7) for the 2 highest BAC groups (p < 0.01). No such relationship was found in patients with Rotterdam CT scores of 4–6 (p = 0.14–0.75). CONCLUSIONS Influence of alcohol significantly reduced the GCS score in a dose-dependent manner in patients with moderate and severe TBI and with Rotterdam CT scores of 1–3. In patients with Rotterdam CT scores of 4–6, and therefore more CT findings indicating increased intracranial pressure, the brain injury itself seemed to overrun the depressing effect of the alcohol on the CNS. This finding is in agreement with the assumption of many clinicians in the emergency situation.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Daniel W Spaite ◽  
Chengcheng Hu ◽  
Bentley J Bobrow ◽  
Bruce J Barnhart ◽  
Vatsal Chikani ◽  
...  

Background: In hospital-based studies, hypotension (HT, SBP <90) is more likely to occur in multisystem traumatic brain injury (MTBI) than isolated (ITBI). However, there are few EMS studies on this issue. Hypothesis: Prehospital HT is associated with differential effects in MTBI and ITBI and these effects are influenced by the severity of primary brain injury. Methods: Inclusion: TBI cases in the EPIC Study (NIH 1R01NS071049) before TBI guideline implementation (1/07-3/14). ITBI: Major TBI cases (CDC Barell Matrix Type 1) that had no injury with ICD9-based Regional Severity Score [RSS (AIS equivalent)] ≥3 in any other body region. MTBI: Type 1 TBI plus at least one non-head region injury with RSS ≥3. Results: Included were 13,435 cases [Excl: age <10 (5.9%), missing data (6.2%)]. 10,374 (77.2%) were ITBI, 3061 (22.8%) MTBI. Mortality: ITBI: 7.7% (797/10,374), MTBI: 19.2% (587/3061, p<0.0001). Prehospital HT occurred 3.5 times more often in MTBI (14.8%, 453/3061 vs 4.2%, 437/10,374; p<0.0001). Among HT cases, 40.8% (185/453) with MTBI died vs 30.9% with ITBI (135/437; p<0.0001). In the hypotensive moderate/severe TBI cohort (RSS-Head 3/4), MTBI mortality was 2.4 times higher (17.2%, 40/232) than ITBI (7.1%, 17/240, p = 0.001). However, in the hypotensive very/extremely severe TBI group (RSS-Head 5/6), mortality was almost identical in MTBI (73.4%, 141/192) and ITBI (72.1%, 116/161, p = 0.864). Conclusion: Among major TBI patients with prehospital HT, those with MTBI were much more likely to die than those with ITBI. However, this association varied dramatically with TBI severity. In mod/severe TBI cases with HT, MTBI mortality was 2.4 times higher than in ITBI. In contrast, in very/extremely severe TBI with HT, there was no identifiable mortality difference. Thus, in cases with substantial potential to survive the primary brain injury (mod/severe), outcome is markedly worse in patients with multisystem injuries. However, in very/extremely severe TBI, non-head region injuries have no apparent association with mortality. This may be because the TBI is the primary factor leading to death in these cases. The main EPIC study is evaluating whether this severity-based difference in “effect” has implications for TBI guideline treatment effectiveness.


Sign in / Sign up

Export Citation Format

Share Document