scholarly journals Throughput optimization of multi-hop and multi-path cooperation in WPSNs with hardware noises

2021 ◽  
Vol 17 (6) ◽  
pp. 155014772110248
Author(s):  
Lina Yuan ◽  
Huajun Chen ◽  
Jing Gong

This paper proposes a novel multi-path and multi-hop wireless powered sensor network in case of hardware impairment, constituting an energy node, one source node, single sink node, and a series of distributed relay sensor nodes, where the energy node transmits wireless energy to all terminals in the first stage, and the relay sensor nodes relay the information of the source node to the sink node in the second stage. There exists M available paths between the source node and sink node, one of which is chosen for serving source-sink communication. To enhance the minimum achievable data rate, we propose a multi-hop communication protocol based on time-division-multiple-access and an optimal throughput path algorithm. We formulate the time allocation optimization problem about energy and information transmission of the proposed multi-hop cooperation, and confirm through abundant simulation experiments that the proposed scheme can availably improve user unfairness and spectral efficiency, and thus enhance its throughput performance.

2015 ◽  
Vol 764-765 ◽  
pp. 838-842
Author(s):  
Young Long Chen ◽  
Yung Chi Chang ◽  
Yu Ling Zeng

Wireless sensor networks (WSNs) are a group of wireless sensor nodes, those sensor nodes with sensing and monitoring of environmental information. Energy consumption is an important topic; the node's power is limited. Therefore, we proposed an Opportunistic Large Array Concentric Geographic Routing Algorithm (OLACGRA) to reduce the node’s energy consumption and analysis the characteristic of energy model. The sink position of our proposed OLACGRA is at the center of concentric topology architecture. The source node wants to transmit data that it needs to calculate the distance between source node and sink node. If this distance bigger than threshold value, we use the multi-hop manner. Otherwise, source node transmits data to sink node directly. Simulation results show that our proposed algorithm can effectively reduce the node’s energy consumption.


Author(s):  
Awais Ahmad ◽  
Anand Paul ◽  
Sohail Jabbar ◽  
Seungmin Rho

Avoiding from congestion and provision of reliable communication characterising the low energy consumption and high data rate is one of the momentous challenges at Media Access Control (MAC) layer. This become more difficult to achieve when there is energy constraint mixed with mobility of nodes. Same issue is addressed in this underlying paper. Here we have proposed a Time-Sharing Energy Efficient Congestion Control (TSEEC) technique for Mobile Wireless Sensor Networks. Time Division Multiple Access Protocol (TDMA) and Statistical Time Division Multiple Access Protocol (STDMA) are major constituents of this technique. These helps in conserving the energy by controlling the sleeping, waking up and listening states of sensor nodes. Load Based Allocation and Time Allocation Leister techniques further helps in conserving the network energy minimizing the network congestion. First mentioned technique is designed on the basis of STDMA Protocol and uses the sensor node information to dynamically assign the time slots while later said technique is does the job of mobility management of sensor node. This Time Allocation Leister techniques further comprises of Extricated Time Allocation (ETA), Shift Back Time Allocation (SBTA), and eScaped Time Allocation (STA) sub techniques for managing the joing and leaving of nodes to cluster and redundant\absence of data for communication respectively. To control the movement of mobile sensor nodes, we have also introduced mobility pattern as part of TSEEC that helps in making the protocol adaptive to traffic environment and to mobility as well. A comparitive analysis of proposed mechanism with SMAC is performed in NS2 along with mathematical anslysis by considering energy consumption, and packet deliver ratio as performance evaluation parameters. The results for the former outperforms to that of later. Moreover, comparative analysis of the proposed TSEEC with other MAC protocols is also presented.


2020 ◽  
pp. 780-799
Author(s):  
Awais Ahmad ◽  
Anand Paul ◽  
Sohail Jabbar ◽  
Seungmin Rho

Avoiding from congestion and provision of reliable communication characterising the low energy consumption and high data rate is one of the momentous challenges at Media Access Control (MAC) layer. This become more difficult to achieve when there is energy constraint mixed with mobility of nodes. Same issue is addressed in this underlying paper. Here we have proposed a Time-Sharing Energy Efficient Congestion Control (TSEEC) technique for Mobile Wireless Sensor Networks. Time Division Multiple Access Protocol (TDMA) and Statistical Time Division Multiple Access Protocol (STDMA) are major constituents of this technique. These helps in conserving the energy by controlling the sleeping, waking up and listening states of sensor nodes. Load Based Allocation and Time Allocation Leister techniques further helps in conserving the network energy minimizing the network congestion. First mentioned technique is designed on the basis of STDMA Protocol and uses the sensor node information to dynamically assign the time slots while later said technique is does the job of mobility management of sensor node. This Time Allocation Leister techniques further comprises of Extricated Time Allocation (ETA), Shift Back Time Allocation (SBTA), and eScaped Time Allocation (STA) sub techniques for managing the joing and leaving of nodes to cluster and redundant\absence of data for communication respectively. To control the movement of mobile sensor nodes, we have also introduced mobility pattern as part of TSEEC that helps in making the protocol adaptive to traffic environment and to mobility as well. A comparitive analysis of proposed mechanism with SMAC is performed in NS2 along with mathematical anslysis by considering energy consumption, and packet deliver ratio as performance evaluation parameters. The results for the former outperforms to that of later. Moreover, comparative analysis of the proposed TSEEC with other MAC protocols is also presented.


2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 114 ◽  
Author(s):  
Dong Chen ◽  
Wei Lu ◽  
Weiwei Xing ◽  
Na Wang

With the wide application of wireless sensor networks (WSNs), secure data sharing in networks is becoming a hot research topic and attracting more and more attention. A huge challenge is securely transmitting the data from the source node to the sink node. Except for eavesdropping the information stored in the packages, the adversary may also attempt to analyze the contextual information of the network to locate the source node. In this paper, we proposed a secure data sharing approach to defend against the adversary. Specifically, we first design a secret key mechanism to guarantee the security of package delivery between a pair of nodes. Then, a light-weighted secret sharing scheme is designed to map the original message to a set of shares. Finally, the shares are delivered to the sink node independently based on a proper random routing algorithm. Simulation results illustrate that our approach can defend against the eavesdropping and tracing-back attack in an energy-efficient manner.


Author(s):  
Zhiyao Fan ◽  
Tianhong Pan ◽  
Li Ma

In order to increase the management efficiency and decrease the maintenance costs in the traditional dust monitoring system, a novel real-time remote monitoring system using the Internet of Things and cloud server is proposed in this paper. The system includes several sensor nodes, a sink node and Cloud Server. The high-precision dust probe, temperature and humidity sensors, water flow sensors and hydrogen transmitters are integrated together into a sensor node to access the metal polished environmental information. Then, the collected information is transmitted to sink-node using the 2.4G wireless network. The sink-node uploads data to the Cloud Server through the 4G network and TCP Socket. Based on the Browser/Server (B/S) model, a remote monitoring system is developed by using Tencent Cloud Server, C# language, and SQL database. As a result, the on-site metal polishing environmental information is obtained via the App and Web page.


2013 ◽  
Vol 711 ◽  
pp. 440-445
Author(s):  
Xiang Fu ◽  
Chun Ping Lu ◽  
Hao Li

DGreedy (distributed greedy) algorithm evaluates the priority level in view of remaining energy of terminals, and the relationships between neighbor nodes are not considered. At the same time, the adjustable sensing orientations of sensors are limited. Therefore, the network coverage ratio of DGreedy is affected usually by the processing order of sensor nodes. In this paper, an improved Greedy algorithm for the coverage in directional sensor network is proposed based on the principle of global greedy. The single coverage area of nodes is considered as priority. The direction of node with maximum single coverage area is deployed firstly. Thereby it reduces the sensing overlapping regions and accomplishes coverage enhancement of the networks. Meanwhile, in order to improve the network coverage ratio, the sensing orientations of sensors are adjustable continuously, so the best sensing orientation of node can be selected by considering the deployment of neighbor nodes. Simulation experiments show that the proposed algorithm can improve the coverage area effectively.


Many researches have been proposed for efficiency of data transmission from sensor nodes to sink node for energy efficiency in wireless sensor networks. Among them, cluster-based methods have been preferred In this study, we used the angle formed with the sink node and the distance of the cluster members to calculate the probability of cluster head. Each sensor node sends measurement values to header candidates, and the header candidate node measures the probability value of the header with the value received from its candidate member nodes. To construct the cluster members, the data transfer direction is considered. We consider angle, distance, and direction as cluster header possibility value. Experimental results show that data transmission is proceeding in the direction of going to the sink node. We calculated and displayed the header possibility value of the neighbor nodes of the sensor node and confirmed the candidates of the cluster header for data transfer as the value. In this study, residual energy amount of each sensor node is not considered. In the next study, we calculate the value considering the residual energy amount of the node when measuring the header possibility value of the cluster.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sabeeh Ahmad Saeed ◽  
Farrukh Zeeshan Khan ◽  
Zeshan Iqbal ◽  
Roobaea Alroobaea ◽  
Muneer Ahmad ◽  
...  

Internet of Things (IoT) is considered one of the world’s ruling technologies. Billions of IoT devices connected together through IoT forming smart cities. As the concept grows, it is very challenging to design an infrastructure that is capable of handling large number of devices and process data effectively in a smart city paradigm. This paper proposed a structure for smart cities. It is implemented using a lightweight easy to implement network design and a simpler data format for information exchange that is suitable for developing countries like Pakistan. Using MQTT as network protocol, different sensor nodes were deployed for collecting data from the environment. Environmental factors like temperature, moisture, humidity, and percentage of CO2 and methane gas were recorded and transferred to sink node for information sharing over the IoT cloud using an MQTT broker that can be accessed any time using Mosquitto client. The experiment results provide the performance analysis of the proposed network at different QoS levels for the MQTT protocol for IoT-based smart cities. JSON structure is used to formulate the communication data structure for the proposed system.


Sign in / Sign up

Export Citation Format

Share Document