scholarly journals An IoT-Based Network for Smart Urbanization

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sabeeh Ahmad Saeed ◽  
Farrukh Zeeshan Khan ◽  
Zeshan Iqbal ◽  
Roobaea Alroobaea ◽  
Muneer Ahmad ◽  
...  

Internet of Things (IoT) is considered one of the world’s ruling technologies. Billions of IoT devices connected together through IoT forming smart cities. As the concept grows, it is very challenging to design an infrastructure that is capable of handling large number of devices and process data effectively in a smart city paradigm. This paper proposed a structure for smart cities. It is implemented using a lightweight easy to implement network design and a simpler data format for information exchange that is suitable for developing countries like Pakistan. Using MQTT as network protocol, different sensor nodes were deployed for collecting data from the environment. Environmental factors like temperature, moisture, humidity, and percentage of CO2 and methane gas were recorded and transferred to sink node for information sharing over the IoT cloud using an MQTT broker that can be accessed any time using Mosquitto client. The experiment results provide the performance analysis of the proposed network at different QoS levels for the MQTT protocol for IoT-based smart cities. JSON structure is used to formulate the communication data structure for the proposed system.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1598
Author(s):  
Sigurd Frej Joel Jørgensen Ankergård ◽  
Edlira Dushku ◽  
Nicola Dragoni

The Internet of Things (IoT) ecosystem comprises billions of heterogeneous Internet-connected devices which are revolutionizing many domains, such as healthcare, transportation, smart cities, to mention only a few. Along with the unprecedented new opportunities, the IoT revolution is creating an enormous attack surface for potential sophisticated cyber attacks. In this context, Remote Attestation (RA) has gained wide interest as an important security technique to remotely detect adversarial presence and assure the legitimate state of an IoT device. While many RA approaches proposed in the literature make different assumptions regarding the architecture of IoT devices and adversary capabilities, most typical RA schemes rely on minimal Root of Trust by leveraging hardware that guarantees code and memory isolation. However, the presence of a specialized hardware is not always a realistic assumption, for instance, in the context of legacy IoT devices and resource-constrained IoT devices. In this paper, we survey and analyze existing software-based RA schemes (i.e., RA schemes not relying on specialized hardware components) through the lens of IoT. In particular, we provide a comprehensive overview of their design characteristics and security capabilities, analyzing their advantages and disadvantages. Finally, we discuss the opportunities that these RA schemes bring in attesting legacy and resource-constrained IoT devices, along with open research issues.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1006 ◽  
Author(s):  
Charikleia Papatsimpa ◽  
Jean-Paul Linnartz

Smart buildings with connected lighting and sensors are likely to become one of the first large-scale applications of the Internet of Things (IoT). However, as the number of interconnected IoT devices is expected to rise exponentially, the amount of collected data will be enormous but highly redundant. Devices will be required to pre-process data locally or at least in their vicinity. Thus, local data fusion, subject to constraint communications will become necessary. In that sense, distributed architectures will become increasingly unavoidable. Anticipating this trend, this paper addresses the problem of presence detection in a building as a distributed sensing of a hidden Markov model (DS-HMM) with limitations on the communication. The key idea in our work is the use of a posteriori probabilities or likelihood ratios (LR) as an appropriate “interface” between heterogeneous sensors with different error profiles. We propose an efficient transmission policy, jointly with a fusion algorithm, to merge data from various HMMs running separately on all sensor nodes but with all the models observing the same Markovian process. To test the feasibility of our DS-HMM concept, a simple proof-of-concept prototype was used in a typical office environment. The experimental results show full functionality and validate the benefits. Our proposed scheme achieved high accuracy while reducing the communication requirements. The concept of DS-HMM and a posteriori probabilities as an interface is suitable for many other applications for distributed information fusion in wireless sensor networks.


2019 ◽  
Vol 11 (4) ◽  
pp. 100 ◽  
Author(s):  
Maurizio Capra ◽  
Riccardo Peloso ◽  
Guido Masera ◽  
Massimo Ruo Roch ◽  
Maurizio Martina

In today’s world, ruled by a great amount of data and mobile devices, cloud-based systems are spreading all over. Such phenomenon increases the number of connected devices, broadcast bandwidth, and information exchange. These fine-grained interconnected systems, which enable the Internet connectivity for an extremely large number of facilities (far beyond the current number of devices) go by the name of Internet of Things (IoT). In this scenario, mobile devices have an operating time which is proportional to the battery capacity, the number of operations performed per cycle and the amount of exchanged data. Since the transmission of data to a central cloud represents a very energy-hungry operation, new computational paradigms have been implemented. The computation is not completely performed in the cloud, distributing the power load among the nodes of the system, and data are compressed to reduce the transmitted power requirements. In the edge-computing paradigm, part of the computational power is moved toward data collection sources, and, only after a first elaboration, collected data are sent to the central cloud server. Indeed, the “edge” term refers to the extremities of systems represented by IoT devices. This survey paper presents the hardware architectures of typical IoT devices and sums up many of the low power techniques which make them appealing for a large scale of applications. An overview of the newest research topics is discussed, besides a final example of a complete functioning system, embedding all the introduced features.


Author(s):  
Zhiyao Fan ◽  
Tianhong Pan ◽  
Li Ma

In order to increase the management efficiency and decrease the maintenance costs in the traditional dust monitoring system, a novel real-time remote monitoring system using the Internet of Things and cloud server is proposed in this paper. The system includes several sensor nodes, a sink node and Cloud Server. The high-precision dust probe, temperature and humidity sensors, water flow sensors and hydrogen transmitters are integrated together into a sensor node to access the metal polished environmental information. Then, the collected information is transmitted to sink-node using the 2.4G wireless network. The sink-node uploads data to the Cloud Server through the 4G network and TCP Socket. Based on the Browser/Server (B/S) model, a remote monitoring system is developed by using Tencent Cloud Server, C# language, and SQL database. As a result, the on-site metal polishing environmental information is obtained via the App and Web page.


Internet of Things (IoT) is efficiently plays vital role in development of several sectors by offering many opportunities to grow the economy and improve the life standard through connecting billions of “Things” which provides business opportunities in different sectors and encounter many technical and application challenges. This paper emphasizes the role of Dynamic bandwidth allocation and protocols standards in various IoT sectors such as healthcare, education, agriculture, industrial, transportation, smart cities etc., and focuses on the challenges in providing uninterrupted bandwidth to all IoT devices with existing infrastructure, which depends on standardized protocols and network devices to establish connection with heterogeneous IoT devices. This paper covers Enhanced Dynamic Bandwidth Techniques, protocol standards and policies in IoT network technologies to Improve QoS in IoT devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Runnan Zhang ◽  
Gang Liu ◽  
Shancang Li ◽  
Yongheng Wei ◽  
Quan Wang

Smart cities require new access control models for Internet of Things (IoT) devices that preserve user privacy while guaranteeing scalability and efficiency. Researchers believe that anonymous access can protect the private information even if the private information is not stored in authorization organization. Many attribute-based access control (ABAC) models that support anonymous access expose the attributes of the subject to the authorization organization during the authorization process, which allows the authorization organization to obtain the attributes of the subject and infer the identity of the subject. The ABAC with anonymous access proposed in this paper called ABSAC strengthens the identity-less of ABAC by combining homomorphic attribute-based signatures (HABSs) which does not send the subject attributes to the authorization organization, reducing the risk of subject identity re-identification. It is a secure anonymous access framework. Tests show that the performance of ABSAC implementation is similar to ABAC’s performance.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3047
Author(s):  
Kolade Olorunnife ◽  
Kevin Lee ◽  
Jonathan Kua

Recent years have seen the rapid adoption of Internet of Things (IoT) technologies, where billions of physical devices are interconnected to provide data sensing, computing and actuating capabilities. IoT-based systems have been extensively deployed across various sectors, such as smart homes, smart cities, smart transport, smart logistics and so forth. Newer paradigms such as edge computing are developed to facilitate computation and data intelligence to be performed closer to IoT devices, hence reducing latency for time-sensitive tasks. However, IoT applications are increasingly being deployed in remote and difficult to reach areas for edge computing scenarios. These deployment locations make upgrading application and dealing with software failures difficult. IoT applications are also increasingly being deployed as containers which offer increased remote management ability but are more complex to configure. This paper proposes an approach for effectively managing, updating and re-configuring container-based IoT software as efficiently, scalably and reliably as possible with minimal downtime upon the detection of software failures. The approach is evaluated using docker container-based IoT application deployments in an edge computing scenario.


2019 ◽  
Vol 2 (3) ◽  
pp. 30
Author(s):  
Odysseas Lamtzidis ◽  
Dennis Pettas ◽  
John Gialelis

Internet-of-Things (IoT) is an enabling technology for numerous initiatives worldwide such as manufacturing, smart cities, precision agriculture, and eHealth. The massive field data aggregation of distributed administered IoT devices allows new insights and actionable information for dynamic intelligent decision-making. In such distributed environments, data integrity, referring to reliability and consistency, is deemed insufficient and requires immediate facilitation. In this article, we introduce a distributed ledger (DLT)-based system for ensuring IoT data integrity which securely processes the aggregated field data. Its uniqueness lies in the embedded use of IOTA’s ledger, called “The Tangle”, used to transmit and store the data. Our approach shifts from a cloud-centric IoT system, where the Super nodes simply aggregate and push data to the cloud, to a node-centric system, where each Super node owns the data pushed in a distributed and decentralized database (i.e., the Tangle). The backend serves as a consumer of data and a provider of additional resources, such as administration panel, analytics, data marketplace, etc. The proposed implementation is highly modularand constitutes a significant contribution to the Open Source communities, regarding blockchain and IoT.


Author(s):  
Keerthivasan G ◽  
Aishwarya G ◽  
Jawahar G ◽  
Muthukumar C

Internet of things is one of the emerging technologies in the world. Through which we can generate a large network among the tiny devices to communicate with each other to develop environmental and ecological resources. Most of the smart technology devices are designed by IoT network of devices. By connecting these devices that help to interact with each other and to collect and transfer data over the internet. The IoT devices working speed and their performance have improved by introducing a device called a sensor. The idea of IoT devices with sensors that sense the data and make smart decisions in the environment. This paper makes it clear about the benefits of IoT devices over technology in the modern environment. The sensors in IoT devices are connected to Wi-Fi, Bluetooth and RFID etc. to collect useful data. By connecting devices over the network, the world will become smart and thus it evolves the smart environment including smart homes, smart buildings and smart cities. It is believed that about 30 billion people in the world will use at least one IoT technology devices by the year 2020. To maintain our environment safe and secure the IoT devices play a major role in several enabling technologies. This paper is to present the applications of IoT in smart cities and the environment and a brief explanation about their uses.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3375 ◽  
Author(s):  
Luis Sánchez ◽  
Jorge Lanza ◽  
Juan Santana ◽  
Rachit Agarwal ◽  
Pierre Raverdy ◽  
...  

The Internet of Things (IoT) concept has attracted a lot of attention from the research and innovation community for a number of years already. One of the key drivers for this hype towards the IoT is its applicability to a plethora of different application domains. However, infrastructures enabling experimental assessment of IoT solutions are scarce. Being able to test and assess the behavior and the performance of any piece of technology (i.e., protocol, algorithm, application, service, etc.) under real-world circumstances is of utmost importance to increase the acceptance and reduce the time to market of these innovative developments. This paper describes the federation of eleven IoT deployments from heterogeneous application domains (e.g., smart cities, maritime, smart building, crowd-sensing, smart grid, etc.) with over 10,000 IoT devices overall which produce hundreds of thousands of observations per day. The paper summarizes the resources that are made available through a cloud-based platform. The main contributions from this paper are twofold. In the one hand, the insightful summary of the federated data resources are relevant to the experimenters that might be seeking for an experimental infrastructure to assess their innovations. On the other hand, the identification of the challenges met during the testbed integration process, as well as the mitigation strategies that have been implemented to face them, are of interest for testbed providers that can be considering to join the federation.


Sign in / Sign up

Export Citation Format

Share Document