scholarly journals Are Continued Efforts to Reduce Radiation Exposures from X-Rays Warranted?

Dose-Response ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 155932582199565
Author(s):  
Paul A. Oakley ◽  
Deed E. Harrison

There are pressures to avoid use of radiological imaging throughout all healthcare due to the notion that all radiation is carcinogenic. This perception stems from the long-standing use of the linear no-threshold (LNT) assumption of risk associated with radiation exposures. This societal perception has led to relentless efforts to avoid and reduce radiation exposures to patients at great costs. Many radiation reduction campaigns have been launched to dissuade doctors from using radiation imaging. Lower-dose imaging techniques and practices are being advocated. Alternate imaging procedures are encouraged. Are these efforts warranted? Based on recent evidence, LNT ideology is shown to be defunct for risk assessment at low-dose exposure ranges which includes X-rays and CT scans. In fact, the best evidence that was once used to support LNT ideology, including the Life Span Study data, now indicates thresholds for cancer induction are high; therefore, low-dose X-rays cannot cause harm. Current practices are safe as exposures currently encountered are orders of magnitude below threshold levels shown to be harmful. As long as imaging is medically warranted, it is shown that efforts to reduce exposures that are within background radiation levels and that are also shown to enhance health by upregulating natural adaptive protection systems are definitively wasted resources.

Author(s):  
P.A. Crozier ◽  
M. Pan

Heterogeneous catalysts can be of varying complexity ranging from single or double phase systems to complicated mixtures of metals and oxides with additives to help promote chemical reactions, extend the life of the catalysts, prevent poisoning etc. Although catalysis occurs on the surface of most systems, detailed descriptions of the microstructure and chemistry of catalysts can be helpful for developing an understanding of the mechanism by which a catalyst facilitates a reaction. Recent years have seen continued development and improvement of various TEM, STEM and AEM techniques for yielding information on the structure and chemistry of catalysts on the nanometer scale. Here we review some quantitative approaches to catalyst characterization that have resulted from new developments in instrumentation.HREM has been used to examine structural features of catalysts often by employing profile imaging techniques to study atomic details on the surface. Digital recording techniques employing slow-scan CCD cameras have facilitated the use of low-dose imaging in zeolite structure analysis and electron crystallography. Fig. la shows a low-dose image from SSZ-33 zeolite revealing the presence of a stacking fault.


Dose-Response ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 155932581878144 ◽  
Author(s):  
Paul A. Oakley ◽  
Deed E. Harrison

Evidence-based contemporary spinal rehabilitation often requires radiography. Use of radiography (X-rays or computed tomography scans) should not be feared, avoided, or have their exposures lessened to decrease patient dose possibly jeopardizing image quality. This is because all fears of radiation exposures from medical diagnostic imaging are based on complete fabrication of health risks based on an outdated, invalid linear model that has simply been propagated for decades. We present 7 main arguments for continued use of radiography for routine use in spinal rehabilitation: (1) the linear no-threshold model for radiation risk estimates is invalid for low-dose exposures; (2) low-dose radiation enhances health via the body’s adaptive response mechanisms (ie, radiation hormesis); (3) an X-ray with low-dose radiation only induces 1 one-millionth the amount of cellular damage as compared to breathing air for a day; (4) radiography is below inescapable natural annual background radiation levels; (5) radiophobia stems from unwarranted fears and false beliefs; (6) radiography use leads to better patient outcomes; (7) the risk to benefit ratio is always beneficial for routine radiography. Radiography is a safe imaging method for routine use in patient assessment, screening, diagnosis, and biomechanical analysis and for monitoring treatment progress in daily clinical practice.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582095954 ◽  
Author(s):  
Paul A. Oakley ◽  
Deed E. Harrison

All too often the family physician, orthopedic surgeon, dentist or chiropractor is met with radiophobic concerns about X-ray imaging in the clinical setting. These concerns, however, are unwarranted fears based on common but ill-informed and perpetuated ideology versus current understanding of the effects of low-dose radiation exposures. Themes of X-ray hesitancy come in 3 forms: 1. All radiation exposures are harmful (i.e. carcinogenic); 2. Radiation exposures are cumulative; 3. Children are more susceptible to radiation. Herein we address these concerns and find that low-dose radiation activates the body’s adaptive responses and leads to reduced cancers. Low-dose radiation is not cumulative as long as enough time (e.g. 24 hrs) passes prior to a repeated exposure, and any damage is repaired, removed, or eliminated. Children have more active immune systems; the literature shows children are no more affected than adults by radiation exposures. Medical X-rays present a small, insignificant addition to background radiation exposure that is not likely to cause harm. Doctors and patients alike should be better informed of the lack of risks from diagnostic radiation and the decision to image should rely on the best evidence, unique needs of the patient, and the expertise of the physician—not radiophobia.


2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Sebastian Kalbfleisch ◽  
Yuhe Zhang ◽  
Maik Kahnt ◽  
Khachiwan Buakor ◽  
Max Langer ◽  
...  

Coherent X-ray imaging techniques, such as in-line holography, exploit the high brilliance provided by diffraction-limited storage rings to perform imaging sensitive to the electron density through contrast due to the phase shift, rather than conventional attenuation contrast. Thus, coherent X-ray imaging techniques enable high-sensitivity and low-dose imaging, especially for low-atomic-number (Z) chemical elements and materials with similar attenuation contrast. Here, the first implementation of in-line holography at the NanoMAX beamline is presented, which benefits from the exceptional focusing capabilities and the high brilliance provided by MAX IV, the first operational diffraction-limited storage ring up to approximately 300 eV. It is demonstrated that in-line holography at NanoMAX can provide 2D diffraction-limited images, where the achievable resolution is only limited by the 70 nm focal spot at 13 keV X-ray energy. Also, the 3D capabilities of this instrument are demonstrated by performing holotomography on a chalk sample at a mesoscale resolution of around 155 nm. It is foreseen that in-line holography will broaden the spectra of capabilities of MAX IV by providing fast 2D and 3D electron density images from mesoscale down to nanoscale resolution.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582091932 ◽  
Author(s):  
Paul A. Oakley ◽  
Deed E. Harrison

Since the 1980s, increased utilization of medical radiology, primarily computed tomography, has doubled medically sourced radiation exposures. Ensuing fear-mongering media headlines of iatrogenic cancers from these essential medical diagnostic tools has led the public and medical professionals alike to display escalating radiophobia. Problematically, several campaigns including Image Gently, Image Wisely, and facets of Choosing Wisely propagate fears of all medical radiation, which is necessary for the delivery of effective and efficient health care. Since there are no sound data supporting the alleged risks from low-dose radiation and since there is abundant evidence of health benefits from low-doses, these imaging campaigns seem misguided. Further, thresholds for cancer are 100 to 1000-fold greater than X-rays, which are within the realm of natural background radiation where no harm has ever been validated. Here, we focus on radiographic imaging for use in spinal rehabilitation by manual therapists, chiropractors, and physiotherapists as spinal X-rays represent the lowest levels of radiation imaging and are critical in the diagnosis and management of spine-related disorders. Using a case example of a chiropractic association adopting “Choosing Wisely,” we argue that these campaigns only fuel the pervasive radiophobia and continue to constrain medical professionals, attempting to deliver quality care to patients.


2021 ◽  
Vol 10 (10) ◽  
pp. 2196
Author(s):  
Julie Finance ◽  
Laurent Zieleskewicz ◽  
Paul Habert ◽  
Alexis Jacquier ◽  
Philippe Parola ◽  
...  

Background: The COVID-19 pandemic has provided an opportunity to use low- and non-radiating chest imaging techniques on a large scale in the context of an infectious disease, which has never been done before. Previously, low-dose techniques were rarely used for infectious diseases, despite the recognised danger of ionising radiation. Method: To evaluate the role of low-dose computed tomography (LDCT) and lung ultrasound (LUS) in managing COVID-19 pneumonia, we performed a review of the literature including our cases. Results: Chest LDCT is now performed routinely when diagnosing and assessing the severity of COVID-19, allowing patients to be rapidly triaged. The extent of lung involvement assessed by LDCT is accurate in terms of predicting poor clinical outcomes in COVID-19-infected patients. Infectious disease specialists are less familiar with LUS, but this technique is also of great interest for a rapid diagnosis of patients with COVID-19 and is effective at assessing patient prognosis. Conclusions: COVID-19 is currently accelerating the transition to low-dose and “no-dose” imaging techniques to explore infectious pneumonia and their long-term consequences.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


Author(s):  
A. V. Crewe ◽  
M. Ohtsuki

We have assembled an image processing system for use with our high resolution STEM for the particular purpose of working with low dose images of biological specimens. The system is quite flexible, however, and can be used for a wide variety of images.The original images are stored on magnetic tape at the microscope using the digitized signals from the detectors. For low dose imaging, these are “first scan” exposures using an automatic montage system. One Nova minicomputer and one tape drive are dedicated to this task.The principal component of the image analysis system is a Lexidata 3400 frame store memory. This memory is arranged in a 640 x 512 x 16 bit configuration. Images are displayed simultaneously on two high resolution monitors, one color and one black and white. Interaction with the memory is obtained using a Nova 4 (32K) computer and a trackball and switch unit provided by Lexidata.The language used is BASIC and uses a variety of assembly language Calls, some provided by Lexidata, but the majority written by students (D. Kopf and N. Townes).


Sign in / Sign up

Export Citation Format

Share Document