scholarly journals Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

2016 ◽  
Vol 8 (5) ◽  
pp. 168781401664824 ◽  
Author(s):  
Mohammad Reza Herfatmanesh ◽  
Zhijun Peng ◽  
Alexis Ihracska ◽  
Yuzhen Lin ◽  
Lipeng Lu ◽  
...  
2002 ◽  
Vol 124 (3) ◽  
pp. 708-716 ◽  
Author(s):  
P. A. Lakshminarayanan ◽  
N. Nayak ◽  
S. V. Dingare ◽  
A. D. Dani

Hydrocarbon (HC) emissions from direct injection (DI) diesel engines are mainly due to fuel injected and mixed beyond the lean combustion limit during ignition delay and fuel effusing from the nozzle sac at low pressure. In the present paper, the concept has been developed to provide an elegant model to predict the HC emissions considering slow burning. Eight medium speed engines differing widely in bores, strokes, rated speeds, and power were studied for applying the model. The engines were naturally aspirated, turbocharged, or turbocharged with intercooling. The model has been validated by collecting data on HC emission, and pressures in the cylinder and in the fuel injection system from the experimental engines. New coefficients for the correlation of HC with operating parameters were obtained and these are different from the values published earlier, based on single-engine experiments.


Author(s):  
Ke Zhang ◽  
Zhifeng Xie ◽  
Ming Zhou

Single-cylinder diesel engines usually employ mechanically actuated or time-type electrically controlled fuel injection systems. But due to the lack of flexibility to provide high pressure and fully varying injection parameters, fuel efficiency and emissions are poor. Although modern multi-cylinder engines have employed high pressure common rail fuel injection system for a long time, this technology has not been demonstrated in single-cylinder diesel engines. Due to the small installation space and little fuel injection amount of single cylinder diesel engine, high pressure common rail fuel injection system cannot be employed directly. In this study an electrically controlled high pressure fuel injection system of time-pressure-type (PTFS) for single-cylinder diesel engine was demonstrated. PTFS integrated the fuel pump and pressure reservoir (PR) to reduce installation space, which enabled it to match various kinds of single-cylinder diesel engines. However, the volume of the PR of PTFS is still limited, leading to obvious pressure fluctuation induced by periodic fuel pumping and injection. Pressure fluctuation might affect the stability and consistency of fuel injection, deteriorating the combustion and emissions of the engine further. This work established a mathematical model for the system, and studied the effect of the main parameters of the PR to the pressure fluctuations in the PR. The structure and dimensions of the system were optimized and a damping mechanism was proposed to reduce the pressure fluctuation. The optimized pressure fluctuation of PTFS achieved an acceptable level which can support steady and effective fuel injection. As a result, the fuel consumption efficiency and emission level of single cylinder diesel engine were enhanced.


Author(s):  
F J Wallace ◽  
J G Hawley

This paper is a further development of work previously reported on a wholly analytical approach to heat release modelling and is applicable to high-speed direct injection (HSDI) diesel engines operating with high-pressure common rail fuel injection systems under conditions of predominantly mixing-controlled combustion. The key variable in this treatment is the fuel preparation or combustion rate factor WH which, in conjunction with the primary injection variables, i.e. rail pressure, injection velocity and duration, defines the shape and amplitude of the heat release curve. It was shown in a previous paper that by expressing the fuel preparation rate factor WH as a function of time rather than crank angle, i.e. WHt instead of WHθ, the former can be presented as a nearly linear function of the square of injection velocity, i.e. WHt is directly proportional to the kinetic energy of the injected fuel spray, the latter evidently being the primary influence on the rate of the fuel-air mixing process. The analytical treatment developed in the authors' previous paper then allows heat release rates in the engine, dQ/dθ, to be calculated over a wide range of engine speeds and loads, with the aid of the existing engine simulation code ODES (Otto diesel engine simulation) to predict the associated engine performance and emissions, without resorting to further engine testing.


Author(s):  
N. A. Henein ◽  
I. P. Singh ◽  
L. Zhong ◽  
Y. Poonawala ◽  
J. Singh ◽  
...  

This paper introduces a phenomenological model for the fuel distribution, combustion, and emissions formation in the small bore, high speed direct injection diesel engine. A differentiation is made between the conditions in large bore and small bore diesel engines, particularly regarding the fuel impingement on the walls and the swirl and squish gas flow components. The model considers the fuel injected prior to the development of the flame, fuel injected in the flame, fuel deposited on the walls and the last part of the fuel delivered at the end of the injection process. The model is based on experimental results obtained in a single-cylinder, 4-valve, direct-injection, four-stroke-cycle, water-cooled, diesel engine equipped with a common rail fuel injection system. The engine is supercharged with heated shop air, and the exhaust back pressure is adjusted to simulate actual turbo-charged diesel engine conditions. The experiments covered a wide range of injection pressures, EGR rates, injection timings and swirl ratios. Correlations and 2-D maps are developed to show the effect of combinations of the above parameters on engine out emissions. Emphasis is made on the nitric oxide and soot measured in Bosch Smoke Units (BSU).


Sign in / Sign up

Export Citation Format

Share Document