scholarly journals Damping performance analysis of magnetorheological damper with serial-type flow channels

2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881684 ◽  
Author(s):  
Guoliang Hu ◽  
Hao Liu ◽  
Jinfu Duan ◽  
Lifan Yu

In order to obtain a larger damping force with the limited axial size of the vehicle suspension system, a new magnetorheological damper with serial-type flow channels was developed. The piston head was equipped with two piston end covers, three piston non-magnetic sleeves, and four piston magnetic sleeves, which were sequentially combined into three serial-type flow channels to form three groups of effective damping gaps. The structure and principle of the proposed magnetorheological damper were described in detail, and the model for calculating damping force was deduced too. Simulation and analysis for the proposed magnetorheological damper was implemented using electromagnetic field simulation software. The damping performance was tested and analyzed on the test rig under different applied current, amplitude, and frequency excitation. The experimental results show that the damping force is 6838 N under the load excitation with frequency of 1 Hz, amplitude of 7.5 mm, and current of 1.5 A, which is 1.6 times than the expected damping force. The equivalent damping coefficient is attained to 290 kN/s m−1, which shows that the developed magnetorheological damper has high vibration control ability and good mechanical properties.

2013 ◽  
Vol 336-338 ◽  
pp. 475-479 ◽  
Author(s):  
Yao Hui Guo ◽  
En Wei Chen ◽  
Qun Wu ◽  
Yi Min Lu ◽  
Zeng Qiang Xia

MR damper (magnetorheological damper) has broad application prospects, and equivalent damping coefficient is very important of its dynamic characteristic analysis. Based on the modified Bouc_Wen model, the performance of MR damper was analyzed and the equivalent linear damping coefficient of MR damper was calculated. Based on simulation date of the modified Bouc_Wen model, the relationships between the equivalent linear damping coefficient of MR damper and the parameters of control voltage and MR dampers movement amplitude were established by the curve fitting regression analysis method. Verification results prove that the equivalent linear damping coefficient model has higher accuracy. For the vibration systems using strongly nonlinear MR damper, new model can effectively improve the efficiency of calculating the vibration analysis and the stability of the system in a certain frequency. At the same time, the model provides a theoretical basis for the application of MR damper control.


2020 ◽  
Vol 10 (16) ◽  
pp. 5586
Author(s):  
Bo-Gyu Kim ◽  
Dal-Seong Yoon ◽  
Gi-Woo Kim ◽  
Seung-Bok Choi ◽  
Aditya Suryadi Tan ◽  
...  

In this study, a new class of magnetorheological (MR) damper, which can realize desired damping force at both low and high speeds of vehicle suspension systems, is proposed and its salient characteristics are shown through computer simulations. Unlike conventional MR dampers, the proposed MR damper has a specific pole shape function and therefore the damping coefficient is changed by varying the effective area of the main orifice. In addition, by controlling the opening or closing the bypass orifice, the drastic change of the damping coefficient is realizable. After briefly describing the operating principle, a mathematical modeling is performed considering the pole shape function which is a key feature of the proposed MR damper. Then, the field-dependent damping force and piston velocity-dependent characteristics are presented followed by an example on how to achieve desired damping force characteristics by changing the damping coefficient and slope breaking point which represents the bilinear damping property.


2012 ◽  
Vol 482-484 ◽  
pp. 1213-1217
Author(s):  
Jie Yue ◽  
Jin Qiu Zhang ◽  
Yong Qiang Gao ◽  
Zhi Zhao Peng ◽  
Zhi Tao Shi

Aimed to satisfy damping force change requirement of vehicle MRF suspension vibration control system, a controller of MRF suspension system based on On-Off control algorithm is designed, and a control system is carried out. The system takes single chip AT90CAN128 which obey the CAN bus protocols as micro-controller, and it accomplish AD conversion of sensor signal, design of On-Off algorithm and output of PWM voltage power control signal. The system also is used in vibration control experiment of tracklayer vehicle suspension system. The experiment shows that the controller can improve control accuracy, and the control effect is obviously.


2020 ◽  
pp. 107754632093711
Author(s):  
Yafeng Li ◽  
Shouying Li ◽  
Jianzhong Wang ◽  
Zhengqing Chen

A new type of damper combining eddy current damping with rack and gear, which can simultaneously export damping and inertial forces, is proposed. Eddy current damping with rack and gear is supposed to be installed between the building superstructure and foundation to mitigate the seismic response of the building. First, the concept of eddy current damping with rack and gear is introduced in detail and its apparent mass and equivalent damping coefficient are both theoretically investigated. Second, a prototype of eddy current damping with rack and gear is manufactured, and a series of tests on the prototype are carried out to verify its structural parameters. The experimental and theoretical results of the apparent mass of the prototype agree well with each other. The experimental result of the equivalent damping coefficient of the prototype is slightly lower than the numerical results obtained from COMSOL Multiphysics and its maximum relative differences are 11.3% and 13.6% for α = 0° and 45°, respectively. Third, detailed parametric studies on the damping force, including the effects of the thickness of the conductor plate, air gap, and number and location of permanent magnets, are conducted. The results show that the damping force keeps a linear relationship with velocity if it is lower than 0.15 m/s, and with the increase of the velocity, a strong nonlinear relationship between the damping force and the velocity is observed. The available maximum damping force can be increased by decreasing the thickness of the conductor plate and the air gap, increasing the number of permanent magnets. There is an optimal location about the permanent magnets for the available maximum damping force. In addition, the hysteretic curves of the eddy current damping with rack and gear obtained from the test indicate that the ability of energy dissipation is considerable.


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

2021 ◽  
pp. 107754632098638
Author(s):  
Yaya Yan ◽  
Longlei Dong ◽  
Yi Han ◽  
Weishuo Li

Because of the nonlinear hysteresis characteristics of the magneto-rheological damper, the damper’s inverse model has disadvantages of low fitting accuracy and poor practicality. Therefore, in this study, an optimized genetic algorithm has been proposed to optimize the back propagation neural network’s initial weights and threshold. Compared with other damper controllers, the proposed inverse model improves the control current’s prediction accuracy and tracks the desired damping force in real time. Moreover, the proposed inverse model and designed fuzzy controller are applied to the 1/4 vehicle suspension system simulation. The obtained results show that the optimized neural network model can be applied to a practical control. The root mean square value of body acceleration of semi-active suspension is lower than that of passive suspension under different road excitation. This method provides a foundation for the accurate modeling and semi-active control of the magneto-rheological damper.


2000 ◽  
Author(s):  
Jason E. Lindler ◽  
Norman M. Wereley

Abstract Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, an electrorheological (ER) and magnetorheological (MR) automotive shock absorber were designed and fabricated at the University of Maryland. For the ER shock absorber, an applied electric field between two tubular electrodes, located in the piston head, increases the force required for a given piston rod velocity. For the MR shock absorber, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. For each shock absorber, two different shaped gaps meet the controllable performance requirements of a double adjustable shock absorber. A uniform gap allows for control of the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non-uniform gaps for adjustment of the yield force and post-yield damping, respectively.


Author(s):  
Jiajia Zheng ◽  
Yancheng Li ◽  
Jiong Wang

This paper presents the design and multi-physics optimization of a novel multi-coil magnetorheological (MR) damper with a variable resistance gap (VRG-MMD). Enabling four electromagnetic coils (EMs) with individual exciting currents, a simplified magnetic equivalent circuit was presented and the magnetic flux generated by each voltage source passing through each active gap was calculated as vector operations. To design the optimal geometry of the VRG-MMD, the multi-physics optimization problem including electromagnetics and fluid dynamics has been formulated as a multi-objective function with weighting ratios among total damping force, dynamic range, and inductive time constant. Based on the selected design variables (DVs), six cases with different weighting ratios were optimized using Bound Optimization BY Quadratic Approximation (BOBYQA) technique. Finally, the vibration performance of the optimal VRG-MMD subjected to sinusoidal and triangle displacement excitations was compared to that of the typical multi-coil MR damper.


2014 ◽  
Vol 487 ◽  
pp. 404-407
Author(s):  
Dong Liang ◽  
Zi Shuo Li

Oil dampers are widely used as a popular countermeasure to mitigate the stay cables vibration. In this study, one actual oil damper designed for some long cable-stayed was experimentally investigated to evaluate the durability. 4 million cycles loading, with frequency of 4 Hz and amplitude of 1 mm, was imposed on the damper. The excitation displacement and damping force were measured and the equivalent damping was calculated from the experimental results. The stiffness effects of dampers behaved during durability tests were also analyzed quantitatively. The test results showed that the dampers were still in good condition after 4 million cycles loading and the dampers temperatures were stable at 50 degree centigrade during the test. According to the durability test results, a model for performance deterioration of damper was proposed to predict the lifetime of oil dampers.


Sign in / Sign up

Export Citation Format

Share Document