scholarly journals Two-dimensional model of wave-induced response of seabed around permeable submerged breakwater

2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983080 ◽  
Author(s):  
Richard Asumadu ◽  
Ji-Sheng Zhang ◽  
Osei-Wusuansa Hubert ◽  
Alex Baffour Akoto

This article focuses on a two-dimensional numerical model established to determine the seabed dynamic response in the region of a permeable submerged breakwater. The wave motion in this article is governed by the volume-averaged Reynolds-averaged Navier–Stokes equation, whereas Biot’s poro-elastic equation determines the seabed foundation. The water surface is recorded using the volume of fluid technique. In this study, the results for the two-dimensional seabed dynamic response for both the consolidation status and the dynamic wave-induced response status for the seabed foundation coupled with submerged breakwater are illustrated. The numerical results examined from the dynamic pore pressure, the effective stresses, the shear stress, and the seabed soil displacements revealed that the impact of dynamic response at the offshore zone/seaward on the seabed foundation is more developed than at the onshore zone/harbor side. Parametric results analysis as regards the effect of the wave, the seabed, and the submerged breakwater structure variation significantly affected the seabed foundation response coupled with the breakwater structure. The numerical outcome on the liquefaction potential shows that the seabed foundation is more seemingly to liquefy and happen approximately at the toe of the submerged breakwater under the wave loading.

2011 ◽  
Vol 21 (03) ◽  
pp. 421-457 ◽  
Author(s):  
RAPHAËL DANCHIN ◽  
MARIUS PAICU

Models with a vanishing anisotropic viscosity in the vertical direction are of relevance for the study of turbulent flows in geophysics. This motivates us to study the two-dimensional Boussinesq system with horizontal viscosity in only one equation. In this paper, we focus on the global existence issue for possibly large initial data. We first examine the case where the Navier–Stokes equation with no vertical viscosity is coupled with a transport equation. Second, we consider a coupling between the classical two-dimensional incompressible Euler equation and a transport–diffusion equation with diffusion in the horizontal direction only. For both systems, we construct global weak solutions à la Leray and strong unique solutions for more regular data. Our results rest on the fact that the diffusion acts perpendicularly to the buoyancy force.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hassan Eltayeb ◽  
Imed Bachar ◽  
Yahya T. Abdalla

Abstract In this study, the double Laplace Adomian decomposition method and the triple Laplace Adomian decomposition method are employed to solve one- and two-dimensional time-fractional Navier–Stokes problems, respectively. In order to examine the applicability of these methods some examples are provided. The presented results confirm that the proposed methods are very effective in the search of exact and approximate solutions for the problems. Numerical simulation is used to sketch the exact and approximate solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Hyun Jun Jeong ◽  
Wook Ryol Hwang ◽  
Chongyoup Kim

We present two-dimensional numerical simulations of the impact and spreading of a droplet containing a number of small particles on a flat solid surface, just after hitting the solid surface, to understand particle effects on spreading dynamics of a particle-laden droplet for the application to the industrial inkjet printing process. The Navier-Stokes equation is solved by a finite-element-based computational scheme that employs the level-set method for the accurate interface description between the drop fluid and air and a fictitious domain method for suspended particles to account for full hydrodynamic interaction. Focusing on the particle effect on droplet spreading and recoil behaviors, we report that suspended particles suppress the droplet oscillation and deformation, by investigating the drop deformations for various Reynolds numbers. This suppressed oscillatory behavior of the particulate droplet has been interpreted with the enhanced energy dissipation due to the presence of particles.


Author(s):  
A. P. Oliinyk ◽  
G. V. Grigorchuk ◽  
R. M. Govdyak

In the context of providing trouble-free operation of oil and gas pipelines and preventing possible negative impacts on the environment, the issues of constructing an integrated mathematical model for assessing the technical condition of pipelines and the impact of emergency situations on the state of the environment in the course of hydrocarbon leakage are considered. The model of the evaluation of the stress-strain state of the pipeline according to the data on the displacement of surface points for the above ground and underground sections is given by constructing the law of motion of the site by known displacements of a certain set of surface points using assumptions about the type of deformation of the sections and reproduction of the deformations and stresses tensors components   on the basis of different models of deformed solid body. The specified model does not require information on the whole complex of forces and loads acting on the investigated object during operation. The flow model has been refined in a pipeline with a violation of its tightness by recording a special type of boundary conditions for a Navier-Stokes equation system in a two-dimensional formulation and developing an original method for its solution on the basis of the finite difference method. In the article the stability conditions of the proposed numerical schemes on basis of the spectral sign of stability are presented. In order to assess possible negative impacts on the environment, a model of propagation of matter at its leakage from the pipeline was developed by solving two-dimensional diffusion equations taking into account the variables and different types of boundary conditions that take into account the number of sources of pollution and their intensity. The results of computations based on computational algorithms implemented by these models and graphic material illustrating these calculations are presented, peculiarities of distribution of harmful substances in the environment near the pipeline are analyzed. Directions of further researches for successful practical realization of the offered models are established.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sunggeun Lee ◽  
Shin-Kun Ryi ◽  
Hankwon Lim

We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.


1999 ◽  
Vol 43 (04) ◽  
pp. 229-240
Author(s):  
H. R. Riggs ◽  
R. C. Ertekin

One design for a mobile offshore base is to link serially as many as five large semisubmersibles to form a platform long enough to support large aircraft. This paper investigates the linear, wave-induced response characteristics of serially-connected semisubmersibles. A major motivation of this study is to understand more completely the forces required to link semisubmersible modules. The impact of connector strategy and damping on the response, especially the connector forces, is investigated, and the response "modes" which contribute to the connector forces are evaluated in detail. It is shown that the response characteristics can be impacted significantly by the connection strategy, and that connector damping can be a significant source of energy loss when compared to radiation damping. The wet natural frequencies and normal modes are also determined and used to explain the response characteristics of different connection strategies. Although the analyses are based on a specific semisubmersible design, the results provide insight on how other systems of connected semisubmersibles would likely behave.


2012 ◽  
Author(s):  
El–Harbawi M. ◽  
Mustapha S. ◽  
Idris A. ◽  
Jameel A.T. ◽  
T.G. Chuah

Tenaga lebihan bebas Gibb per unit luas (ΔG) bagi suatu saput nipis yang tulen, tanpa cas pada satu sokongan hanya diterbitkan daripada interaksi antara molekul apolar (Lifshitz - van der Waals) dan polar (acid-bes). Interaksi polar dapat dinyatakan secara berasingan sebagai tekanan penghidratan, interaksi hidrofobik dan intekrasi asid-bes. Jumlah tenaga lebihan bebas Gibb per unit luas (ΔG) bagi satu saput nipis pada satu lapisan bergantung kepada ketebalan saput, dan angkali penyebaran apolar dan polar untuk sistem tersebut. Saput dimodelkan sebagai cecair Newtonian 2-dimensi dengan ketumpatan tetap, ρ, dan kelikatan, μ, mengalir di atas satu permukaan mengufuk. Ketebalan purata saput cecair, h0, dianggapkan cukup nipis supaya kesan graviti boleh diabaikan dan melambung atas oleh gas pasif dan menyambung secara lateral hingga infiniti (Model dua-dimensi). Daya badan yang disebut dalam persamaan Navier-Stokes adalah diubahsuaikan oleh kandungan interaksi antara molekul lebihan (daya apolar dan polar) antara saput bendalir dan permukaan pepejal bergantung kepada daya-daya apolar dan polar. Persamaan Navier-Stokes telah diubahsuai dengan keadaan sempadan berkaitan diselesaikan bawah kaedah pendekatan gelombong panjang untuk memperolehi persamaan perkembangan tak-linear bagi saput antara permukaan. Daya apolar dan polar telah didapati memainkan peranan pencirian atas saput nipis dan kesan utama pada sifat tenaga lebihan bebas, kadar penubuhan, kadar penubuhan maksimum, gelombong neutral, nombor gelombang yang dominan, jarak gelombong dominan dan masa memecah. Oleh demikian, teori linear adalah kurang sesuai untuk menyatakan kestabilan pencirian selaput. Kata kunci: Daya apolar, daya polar, kestabilan linear, kadar pertumbuhan, masa memecah The total excess free energy per unit area (ΔG) of a pure, uncharged thin film on a support is solely derived from the apolar (Lifshitz - van der Waals) and polar (acid-base) intermolecular interactions. Polar interactions are variously described as the hydration pressure, hydrophobic interaction and acid base interaction. The total free excess energy (per unit area) of a thin film on a substrate depends on the film thickness, and the apolar and polar spreading coefficients for the system. The film is modelled as a two-dimensional Newtonian liquid of constant density, ρ and viscosity, μ, flowing on a horizontal plane. The liquid film of mean thickness, h0, is assumed to be thin enough to neglect the gravity effect and bounded above by a passive gas and laterally extends to infinity (two-dimensional model). The body force term in the Navier-Stokes equation is modified by the inclusion of excess intermolecular interactions (apolar and polar forces) between fluid film and the solid surface owing to apolar and polar forces. The modified Navier-Stokes equation with associated boundary conditions is solved under long wave approximation method to obtain a nonlinear equation of evolution of the film interface. The apolar and polar forces were found to play the dominant role in characteristic of thin films and the main effect on the behavior of the excess free energy, growth rate, maximum growth rate, neutral wave, dominant wavenumber, dominant wavelength and rupture time. Hence, the linear theory is inadequate to describe the stability characteristics of films. Key words: Apolar force, polar force, linear stability, growth rate, rupture time


Volume 3 ◽  
2004 ◽  
Author(s):  
Jiongyang Wu ◽  
Wei Shyy ◽  
Stein T. Johansen

The widely used Reynolds-Averaged Navier-Stokes (RANS) approach, such as the k-ε two-equation model, has been found to over-predict the eddy viscosity and can dampen out the time dependent fluid dynamics in both single- and two-phase flows. To improve the predictive capability of this type of engineering turbulence closures, a consistent method is offered to bridge the gap between DNS, LES and RANS models. Based on the filter size, conditional averaging is adopted for the Navier-Stokes equation to introduce one more parameter into the definition of the eddy viscosity. Both time-dependent single-phase and cavitating flows are simulated by a pressure-based method and finite volume approach in the framework of the Favre-averaged equations coupled with the new turbulence model. The impact of the filter-based concept, including the filter size and grid dependencies, is investigated using the standard k-ε model and with the available experimental information.


2018 ◽  
Vol 12 (10) ◽  
pp. 467-475
Author(s):  
E.J. Canate-Gonzalez ◽  
W. Fong-Silva ◽  
C.A. Severiche-Sierra ◽  
Y.A. Marrugo-Ligardo ◽  
J. Jaimes-Morales

Sign in / Sign up

Export Citation Format

Share Document