scholarly journals Isolation effects of vehicle-induced vibration tested by integral floating method

2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110449
Author(s):  
Hao Li ◽  
Weiguo Yang ◽  
Pei Liu ◽  
Xiaoguang Zou ◽  
Meng Wang

A set of integral floating vibration isolation methods was developed in this study to remedy the lack of effective measures for over-track buildings. The effect of vibration isolation pads was investigated experimentally; the resulting field measurements were used to determine the time-frequency dynamic responses of vehicle-induced vibration and isolation effects. The characteristics of the vibration source appear to significantly affect the frequency domain distribution of vibration inside the building. When no vibration isolation measures are taken, the internal vibration of the cultural center exceeds the limit. BSW vibration isolation pads R480, R550, and R800 are effective in the frequency range of 16–80 Hz. The vibration isolation level in the Z direction is between 5.6 and 7.3 dB. After floating vibration isolation treatment, the maximum Z vibration level of the cultural center is 56.4 dB in daytime hours and 52.9 dB at night, which satisfies the relevant standard. The proposed method is shown to effectively hinder the structural vibration caused by subways on surrounding buildings.

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 735
Author(s):  
Xuhui He ◽  
Kehui Yu ◽  
Chenzhi Cai ◽  
Yunfeng Zou ◽  
Xiaojie Zhu

This paper focuses on the dynamic responses of a metro train–bridge system under train-braking. Experiments were performed on the elevated Metro Line 21 of Guangzhou (China). A continuous, three-span, rigid-frame bridge (42 m + 65 m + 42 m) and a standard B-type metro train were selected. The acceleration signals were measured at the center-points of the main span and one side-span, and the acceleration signals of the car body and the bogie frame were measured simultaneously. The train–bridge system’s vibration characteristics and any correlations with time and frequency were investigated. The Choi–Williams distribution method and wavelet coherence were introduced to analyze the obtained acceleration signals of the metro train–bridge system. The results showed that the Choi–Williams distribution provided a more explicit understanding of the time–frequency domain. The correlations between different parts of the bridge and the train–bridge system under braking conditions were revealed. The present study provides a series of measured dynamic responses of the metro train–bridge system under train-braking, which could be used as a reference in further investigations.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jinglei Liu ◽  
Guishuai Feng ◽  
Jian Zhang ◽  
Xiaoyu Zhao ◽  
Chuanqing Yu ◽  
...  

To study the propagation characteristics of Rayleigh waves and the isolation mechanism of a single-row of piles by isolation effects, in this paper we draw a two-dimensional contour map of ζ (normalized acceleration amplitude relative to a measure close at the vibration source) using a vibration test carried out on a sand foundation. In this experiment, we study, in addition to the free field and the single pile cases, settings with two and three piles. The result shows that the vibration caused by the point source in the free field excites Rayleigh waves in a radial direction along the surface of the foundation. Meanwhile, the vibrations of the points along the propagation path on the surface of the foundation are gradually weakened. There is a steady transition when the ζ drops to 0.6 and a placid decline when ζ decreases to less than 0.25. The vibration-shielded region, the strengthened region, and the strengthened strips will appear on the surface of the foundation. The vibration-shielded region is located behind the piles, and the region presents a trumpet-shaped area that takes the pile as the vertex. Increasing the quantity of piles contributes to increasing the vibration isolation effect, not only that involving the degree of isolation but also for the area of the shielded area. The vibration-strengthened regions include the diffraction regions at the pile corners on both sides of the single-row of piles and the scattering region at the gaps of the piles. In addition, the composite regions are located among the vibration source and the scattering and diffraction-strengthened regions. Increasing the number of piles has little influence on the scattering and diffraction-strengthened regions but can significantly enhance the vibrations of the composite regions. In general, the vibration-strengthened strips are connected with the scattering-strengthened regions. However, in the test of a single pile, the pile is connected to the diffraction-strengthened regions near its two anterior angles.


2012 ◽  
Vol 452-453 ◽  
pp. 659-662
Author(s):  
Wei Wang ◽  
Yi Min Deng

Vibration isolation is a most widely used vibration protection method.The stiffness of vibration isolators in existing conventional type of vibration isolation system is usually of fixed value. This limits the system in exhibiting its vibration isolation effect in that, it has poor results for lower frequency vibration, especially for resonance frequency. Magneto-rheological elastomer is a new branch of Magneto-rheological materials. It’s an intelligent materials in that it’s shear modulus can be controlled by a magnetic field. It has wide application prospects in the vibration control area. This paper proposes using adjustable stiffness of magneto-rheological elastomer vibration isolation in vibration isolation system. By changing the current of vibration isolators coil to control the shear modulus of magneto-rheological elastomer, it can adjust the stiffness of the isolation system, making the system obtain wider vibration isolation frequency range. By exploying SimuLink software to analyze the vibration isolation system, it is found that such a design is effective and applicable.


2018 ◽  
Vol 37 (4) ◽  
pp. 682-699
Author(s):  
Xinfang Ge ◽  
Weirong Wang ◽  
Wei Yuan

Development of micro and ultra-precision machining, precision instruments and equipment, precision assembly and testing has put forward more and more high requirements to vibration isolation on environmental elements, especially the pedestrian excitation generated by workers' normal walking. Therefore, it is very important to study the pedestrian excitation's influence on vibration characteristics of precision instruments and equipment. In this study, dynamic model including mathematical model of pedestrian excitation, interaction model between pedestrian and rectangular plate structure, the human–plate coupled dynamic equation in vertical direction of pedestrian–plate structure was established. And then we use the Newmark-β method to solve the time-domain step-by-step integration of the first four order modes' dynamic equations and study the influence of the linear notion trajectory along the central axis direction on the dynamic characteristics of the rectangular plate. By simulation, we discussed plate structure response under different conditions, including plate structure displacement and acceleration response under the single person excitation with different velocities, under normal walking velocity with different number of pedestrians and under this case of different distance between two pedestrians. The results show that the structural vibration induced by pedestrian excitation has great influence on dynamic characteristics of plate.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3135 ◽  
Author(s):  
Ying Wang ◽  
Wensheng Lu ◽  
Kaoshan Dai ◽  
Miaomiao Yuan ◽  
Shen-En Chen

When constructed on tall building rooftops, the vertical axis wind turbine (VAWT) has the potential of power generation in highly urbanized areas. In this paper, the ambient dynamic responses of a rooftop VAWT were investigated. The dynamic analysis was based on ambient measurements of the structural vibration of the VAWT (including the supporting structure), which resides on the top of a 24-story building. To help process the ambient vibration data, an automated algorithm based on stochastic subspace identification (SSI) with a fast clustering procedure was developed. The algorithm was applied to the vibration data for mode identification, and the results indicate interesting modal responses that may be affected by the building vibration, which have significant implications for the condition monitoring strategy for the VAWT. The environmental effects on the ambient vibration data were also investigated. It was found that the blade rotation speed contributes the most to the vibration responses.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 583
Author(s):  
Wenbin Gong ◽  
An Li ◽  
Chunfu Huang ◽  
Hao Che ◽  
Chengxu Feng ◽  
...  

An atomic interference gravimeter (AIG) is of great value in underwater aided navigation, but one of the constraints on its accuracy is vibration noise. For this reason, technology must be developed for its vibration isolation. Up to now, three methods have mainly been employed to suppress the vibration noise of an AIG, including passive vibration isolation, active vibration isolation and vibration compensation. This paper presents a study on how vibration noise affects the measurement of an AIG, a review of the research findings regarding the reduction of its vibration, and the prospective development of vibration isolation technology for an AIG. Along with the development of small and movable AIGs, vibration isolation technology will be better adapted to the challenging environment and be strongly resistant to disturbance in the future.


2009 ◽  
Vol 09 (04) ◽  
pp. 687-709 ◽  
Author(s):  
XINQUN ZHU ◽  
HONG HAO

Studied herein are the signatures of nonlinear vibration characteristics of damaged reinforced concrete structures using the wavelet transform (WT). A two-span RC slab built in 2003 was tested to failure in the laboratory. Vibration measurements were carried out at various stages of structural damage. The vibration frequencies, mode shapes, and damping ratios at each loading stage were extracted and analyzed. It is found that the vibration frequencies are not sensitive to small damages, but are good indicators when damage is severe. The dynamic responses are also analyzed in the time–frequency domain by WT and the skeleton curve is constructed to describe the nonlinear characteristics in the reinforced concrete structures. The results show that the skeleton curves are good indicators of damage in the reinforced concrete structures because they are more sensitive to small damages than vibration frequencies.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Pan Zhou ◽  
Wen L. Li ◽  
Wanyou Li ◽  
Zhijun Shuai

Vibration isolation systems are widely employed in automotive, marine, aerospace, and other engineering fields. Accurate input forces are of great significance for mechanical design, vibration prediction, and structure modification and optimization. One-stage vibration isolation system including engine, vibration isolators, and flexible supporting structure is modeled theoretically in this paper. Input excitation acting on the vibration isolation system is reconstructed using dynamic responses measured on engine and supporting structure under in-suit condition. The reconstructed forces reveal that dynamic responses on rigid body are likely to provide more accurate estimation results. Moreover, in order to improve the accuracy of excitation reconstructed by dynamic responses on flexible supporting structure, auto/cross-power spectral density function is utilized to reduce measurement noise.


Sign in / Sign up

Export Citation Format

Share Document