scholarly journals Intestinal dysbacteriosis activates tumor-associated macrophages to promote epithelial-mesenchymal transition of colorectal cancer

2018 ◽  
Vol 24 (8) ◽  
pp. 480-489 ◽  
Author(s):  
Guangsheng Wan ◽  
Manli Xie ◽  
Hongjie Yu ◽  
Hongyu Chen

In this study we investigated the association between intestinal dysbacteriosis with colorectal cancer progress and the underlying molecular mechanisms. Tumor progression was evaluated using xenograft mice model. The epithelial-mesenchymal transition (EMT) markers were quantified by both real-time PCR and immunoblotting. The serum content of IL-6 and TNF-α were measured with ELISA kits. Cell proliferation was determined by the Cell Counting Kit-8. Intestinal dysbacteriosis was successfully simulated by the administration of a large dose of antibiotics and was demonstrated to promote xenograft tumor growth and induce EMT. Accordingly, the serum concentrations of cytokines IL-6 and TNF-α were significantly increased. Furthermore, the production and secretion of IL-6 and TNF-α were remarkably elevated in macrophages isolated from intestinal dysbiotic mice in comparison with the normal counterparts, and conditioned medium from these was shown to significantly stimulate EMT process in HT29 cells in vitro. Macrophage depletion completely abrogated the pro-tumor effect of intestinal dysbacteriosis. Our results suggest that intestinal dysbacteriosis stimulates macrophage activation and subsequently induces EMT process via secreted pro-inflammatory cytokines IL-6 and TNF-α.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jialing Sun ◽  
Weicong Chen ◽  
Bin Wen ◽  
Mingjia Zhang ◽  
Haitao Sun ◽  
...  

Hepatocellular carcinoma (HCC) is among the most usual cancers globally. In China, Biejiajian pill (BJJP), Traditional Chinese Medicine clinical prescription, is broadly utilized for the prevention and therapy of HCC. However, the mechanisms by which BJJP exerts its effects on the prevention of tumor invasion and metastasis are still largely unknown. In this study, in vitro multiple hepatic cancer cell lines and an in vivo xenograft mice model were used to validate the preventive effects and molecular mechanisms of BJJP in HCC. We established that BJJP significantly repressed the proliferation, metastasis and infiltration of HCC cells. Furthermore, BJJP remarkably suppressed HCC cell migration, as well as invasion via epithelial-mesenchymal transition (EMT) by modulating Snail expression, which was associated with the repression of Akt/GSK-3β/Snail signaling axis activation. In vivo HCC xenograft results indicated that BJJP delayed HCC development and efficiently inhibited lung metastasis. Taken together, BJJP was shown to be an effective therapeutic agent against HCC through repression of the Akt/GSK-3β/Snail signaling cascade and EMT.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lin Zhou ◽  
Qing Chen ◽  
Jie Wu ◽  
Jian Yang ◽  
Huancai Yin ◽  
...  

Although colorectal cancer (CRC) is common, there is a paucity of information regarding its molecular pathogenesis. Studies have shown that miRNAs play pivotal roles in the development and progression of CRC. There is a need to further investigate the biological functions of miRNAs in CRC. In particular, it has been reported that miR-942-5p exhibits tumor-suppressive properties. Thus, we analyzed the functional significance of miR-942-5p in CRC and the underlying molecular mechanisms. We found that miR-942-5p was downregulated in CRC tissues and cells. Cell Counting Kit-8, EdU, and colony formation assays revealed that the overexpression of miR-942-5p by mimics inhibited the proliferation of CRC cells. Use of the miR-942-5p inhibitor effectively enhanced the proliferative potential of CRC cells. Further, in vivo xenograft experiments confirmed these results. Increased expression of miR-942-5p suppressed the invasion, migration, and epithelial-mesenchymal transition of CRC cell lines, while decreased miR-942-5p expression had the opposite effect. CCBE1, a secretory molecule for lymphangiogenesis, was established as a downstream target of miR-942-5p, and its expression was inversely correlated with the expression of miR-942-5p in CRC cells. Additionally, cotransfection of the miR-942-5p inhibitor with si-CCBE1 into CRC cells reversed the effects induced by miR-942-5p overexpression. In conclusion, we confirmed that miR-942-5p exerts oncogenic actions in CRC by targeting CCBE1 and identified miR-942-5p as a potential clinical biomarker for CRC diagnosis and therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Li ◽  
Haojie Wang ◽  
Zhijie Liu ◽  
Alimujiang Abudureyimu

Background: Up until now, the role of circSETD3 (Has_circ_0000567) in regulating cancer development has been reported in several tumors, but the role and regulatory mechanism of circSETD3 in hepatoblastoma (HB) remain unclear.Methods: The qPCR and western blotting were used to determine the mRNA and protein levels in the present study. Stability of circular RNA was detected by RNA digested experiments. The gain-of-function and rescue experiments were used to explore the function and mechanism of circSETD3 in HB. Cell counting kit-8, colony formation, transwell assay, and xenograft mice model were used to detect effects and regulatory mechanism of circSETD3/miR-423-3p/Bim axis on cell aggressive phenotype in vitro and in vivo.Results: Here, we identified that circSETD3 downregulated in both HB clinical tissues and cell lines, compared to that of normal tissues and cells. Further gain-of-function experiments validated that circSETD3 overexpression inhibited cell proliferation, viability, migration, epithelial-mesenchymal transition (EMT) and tumorigenesis, and induced cell apoptosis in HB cells. Next, we validated that miR-423-3p targeted both circSETD3 and 3′ untranslated region (3′UTR) of Bim, and circSETD3 positively regulated Bim in HB cells through sponging miR-423-3p in a competing endogenous RNA (ceRNA)-dependent manner. Furthermore, through conducting reversal experiments, we evidenced that the inhibiting effects of circSETD3 overexpression on HB development were abrogated by upregulating miR-423-3p and downregulating Bim.Conclusion: Taken together, we evidenced that circSETD3 sponged miR-423-3p to upregulate Bim, resulting in the inhibition of HB development.


Author(s):  
Zhenyang Si ◽  
Biao Zhang

<b><i>Background:</i></b> Cough-variant asthma (CVA) is a special type of asthma, solely manifesting with coughing. Studies suggest that airway inflammation is associated with CVA pathogenesis. Amygdalin is found to have an anti-inflammatory potential, while how it affects CVA remains unexplored. <b><i>Methods:</i></b> Cytotoxicity delivered by various concentrations of LPS and amygdalin on BEAS-2B cells was determined by Cell Counting Kit-8 assay. CVA in vitro models were established via LPS exposure on BEAS-2B cells which underwent amygdalin pretreatment. Cell apoptosis was determined by flow cytometry. Production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8, and mucin 5AC (MUC5AC) in BEAS-2B cells was measured by ELISA and qRT-PCR. Expressions of TLR4, E-cadherin, N-cadherin, α-smooth muscle actin (SMA), vimentin, phosphorylated-p65 (p-p65), p65, phosphorylated-IκBα (p-IκBα), and IκBα in BEAS-2B cells were measured by qRT-PCR or Western blot. <b><i>Results:</i></b> LPS and high concentrations of amygdalin (over 600 μg/mL) decreased BEAS-2B cell toxicity. Exposure to LPS inhibited toxicity, enhanced apoptosis; and promoted production of TNF-α, IL-6, IL-8, and MUC5AC, increased the levels of N-Cadherin, α-SMA, vimentin, p-p65, and p-IκBα, and decreased the levels of E-cadherin and IκBα in BEAS-2B cells. Amygdalin pretreatment counteracted the effects of LPS on BEAS-2B cells. Overexpressing TLR4 reversed amygdalin-exerted effects in LPS-exposed BEAS-2B cells. <b><i>Conclusion:</i></b> Amygdalin attenuated airway epithelium apoptosis, inflammation and epithelial-mesenchymal transition through restraining the TLR4/NF-κB signaling pathway in CVA.


2021 ◽  
Author(s):  
Dandan Feng ◽  
Hongzhi Chen ◽  
Guangxi Shi ◽  
Mengdi Zhang ◽  
Hongyi Liang ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) progresses at a rapid pace. Chemotherapy is a major clinical application. However, resistance and metastases are key barriers to chemotherapy. Xiaojin pills (XJP) have been used clinically for treating TNBC for decades. However, the potential molecular mechanisms of the effect of XJP on breast cancer is still not understood.Methods: The cell viability was analyzed using Cell Counting Kit-8 (CCK-8). Flow cytometry was used to detect apoptosis, and the migration and invasion abilities of TNBC were assessed using Transwell assay. For molecular mechanisms, the protein expression levels were determined by Western blot analysis. The expression of β-catenin in the Wnt/β-serial protein (β-catenin) pathway was detected with immunofluorescence (IF).Results: XJP inhibited the viability and proliferation of the TNBC cell line in vitro. Flow cytometry analysis showed that apoptosis increased in both MDA-MB-231 and MDA-MB-468 cells induced by XJP. The expression of the proteins associated with invasion, for example, matrix metalloproteinase (MMP) and MMP9, was reduced. Among epithelial–mesenchymal transition markers, E-cadherin was upregulated and N-cadherin was downregulated. The apoptosis-related proteins caspase-8, caspase-3, caspase-9, and Parp were all upregulated. Additionally, XJP effectively suppressed the expression of β-catenin, which belonged to the Wnt/β-catenin pathway.Conclusions: These results suggested that XJP suppressed the progression of TNBC cells by suppressing apoptosis, invasion, EMT, and Wnt/β-catenin pathway.


2020 ◽  
Vol 20 (7) ◽  
pp. 820-827 ◽  
Author(s):  
Xinyu Shao ◽  
Zhiyi Lei ◽  
Chunli Zhou

Background: Nucleotide-binding domain Leucine-rich Repeat Protein 3 (NLRP3) plays a regulatory role in the immune and inflammatory responses, and has been implicated in Colorectal Cancer (CRC) progression and metastasis. However, the underlying molecular mechanisms have not been fully elucidated. Methods: In this study, we analyzed the expression levels of NLRP3 in human CRC tissues, and performed functional assays in CRC cell lines and a subcutaneous tumor model to elucidate its role in the development and progression of CRC. Results: In this study, we found that NLRP3 was significantly upregulated in human CRC tissues and was associated with tumor size and invasion, lymph node metastasis, venous invasion, neural invasion and TNM staging. Furthermore, knockdown of NLRP3 in CRC cells inhibited their migration and growth in vitro and in vivo, and reversed Epithelial-Mesenchymal Transition (EMT) in vitro. Conclusion: Our findings indicate that NLRP3 likely regulates CRC metastasis by activating the EMT program, and is a potential therapeutic target.


2020 ◽  
Author(s):  
Tianli Shen ◽  
Chenyang Yue ◽  
Xingjie Wang ◽  
Zijun Wang ◽  
Yunhua Wu ◽  
...  

Abstract BackgroundMetastatic recurrence remains a major cause of colorectal cancer (CRC) mortality. In this study, we focused on the role and the potential underlying mechanisms of nuclear factor of activated T cells 1 (NFATc1) in CRC metastasis. MethodsWe examined the expression of NFATc1 in 140 cases of CRC tissues and 35 corresponding adjacent tissues, as well as analyzed the correlation between NFATc1 expression levels and clinical stages. The role of NFATc1 in CRC metastasis and the molecular mechanisms were investigated in both in vitro and in vivo models. ResultsThe results showed that NFATc1 expression was increased in metastatic CRC tissues and positively associated with clinical stages (Stage I vs. Stage II, III or IV) of CRC. Overexpression of NFATc1 promoted CRC cell migration, invasion and epithelial-mesenchymal transition (EMT). Moreover, SNAI1 was verified as the direct transcriptional target of NFATc1 and interacted with Slug to promote EMT. Remarkably, our lung and liver double metastasis mouse model demonstrated that NFATc1 overexpression accelerated CRC metastasis, and treatment with FK506, a calcineurin-NFAT pathway inhibitor, could suppress CRC metastasis in vivo. ConclusionsTaken together, our findings suggest that NFATc1 could transcriptionally activate SNAI1, which in turn could interact with Slug to mediate EMT and to promote CRC metastasis, making NFATc1 a promising target in CRC treatment.


Oncogene ◽  
2021 ◽  
Author(s):  
Jinguo Zhang ◽  
Wencai Guan ◽  
Xiaolin Xu ◽  
Fanchen Wang ◽  
Xin Li ◽  
...  

AbstractThe primary chemotherapy of ovarian cancer (OC) often acquires chemoresistance. Sorcin (SRI), a soluble resistance-related calcium-binding protein, has been reported to be an oncogenic protein in cancer. However, the molecular mechanisms of SRI regulation and the role and aberrant expression of SRI in chemoresistant OC remain unclear. Here, we identified SRI as a key driver of paclitaxel (PTX)-resistance and explored its regulatory mechanism. Using transcriptome profiles, qRT-PCR, proteomics, Western blot, immunohistochemistry, and bioinformatics analyses, we found that SRI was overexpressed in PTX-resistant OC cells and the overexpression of SRI was related to the poor prognosis of patients. SRI was a key molecule required for growth, migration, and PTX-resistance in vitro and in vivo and was involved in epithelial–mesenchymal transition (EMT) and stemness. Mechanistic studies showed that miR-142-5p directly bound to the 3ʹ-UTR of SRI to suppress its expression, whereas a transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) inhibited the transcription of miR-142-5p by directly binding to the E-box fragment in the miR-142 promoter region. Furthermore, ZEB1 was negatively regulated by SRI which physically interacted with Smad4 to block its translocation from the cytosol to the nucleus. Taken together, our findings unveil a novel homeostatic loop of SRI that drives the PTX-resistance and malignant progression via Smad4/ZEB1/miR-142-5p in human OC. Targeting this SRI/Smad4/ZEB1/miR-142-5p loop may reverse the PTX-resistance.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56664 ◽  
Author(s):  
Hao Wang ◽  
Hong-Sheng Wang ◽  
Bin-Hua Zhou ◽  
Cui-Lin Li ◽  
Fan Zhang ◽  
...  

2017 ◽  
Vol 43 (6) ◽  
pp. 2489-2504 ◽  
Author(s):  
Le Chen ◽  
Ying Yao ◽  
Lijuan Sun ◽  
Jiajia Zhou ◽  
Minmin Miao ◽  
...  

Background/Aims: Our study aims to investigate the role, effect and mechanisms of ESRP1 (epithelial splicing regulatory protein 1) in epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer (EOC). Methods: Microarray and immunohistochemical analysis of ESRP1 expression were performed in EOC cases. The correlations between ESRP1 expression and clinical factors on EOC were assessed. Lentivirus-mediated RNA interference and EGFP vector which contains ESRP1 gene were used to down-regulate and up-regulate ESRP1 expression in human EOC cell lines. Roles of ESRP1 in cell growth, migration and invasion of EOC cells were also measured by Cell Counting Kit-8 and Transwell systems in vitro and by a nude mice intraperitoneal transplantation model in vivo. Results: By the analysis of Gene Expression Omnibus (GEO) (p<0.05) and our own microarray data (p<0.001), ESRP1 expression in EOC was significantly different from normal ovarian tissue. It was abundant in the nuclei of cancer cells and in malignant lesions. However, it was weakly expressed or negative in both normal and benign lesions. High ESRP1 expression in EOC was associated with poor clinical outcomes. Decreased ESRP1 expression significantly increased cell migration and invasion both in vivo and in vitro. Snail strongly repressed ESRP1 transcription through binding to the ESRP1 promoter in EOC cells. Furthermore, ESRP1 regulated the expression of CD44s. Down-regulated ESRP1 resulted in an isoform switching from CD44v to CD44s, which modulated epithelial-mesenchymal transition (EMT) program in EOC. Up-regulatin of ESRP1 was detected in mesenchymal to epithelial transition (MET) in vivo. Conclusions: ESRP1 regulates CD44 alternative splicing during the EMT process which plays an important role in EOC carcinogenesis. In addition, ESRP1 is associated with disease prognosis in EOC.


Sign in / Sign up

Export Citation Format

Share Document