scholarly journals A numerical model for the time-dependent wake of a pedalling cyclist

Author(s):  
Martin D Griffith ◽  
Timothy N Crouch ◽  
David Burton ◽  
John Sheridan ◽  
Nicholas AT Brown ◽  
...  

A method for computing the wake of a pedalling cyclist is detailed and assessed through comparison with experimental studies. The large-scale time-dependent turbulent flow is simulated using the Scale Adaptive Simulation approach based on the Shear Stress Transport Reynolds-averaged Navier–Stokes model. Importantly, the motion of the legs is modelled by joining the model at the hips and knees and imposing solid body rotation and translation to the lower and upper legs. Rapid distortion of the cyclist geometry during pedalling requires frequent interpolation of the flow solution onto new meshes. The impact of numerical errors, that are inherent to this remeshing technique, on the computed aerodynamic drag force is assessed. The dynamic leg simulation was successful in reproducing the oscillation in the drag force experienced by a rider over the pedalling cycle that results from variations in the large-scale wake flow structure. Aerodynamic drag and streamwise vorticity fields obtained for both static and dynamic leg simulations are compared with similar experimental results across the crank cycle. The new technique presented here for simulating pedalling leg cycling flows offers one pathway for improving the assessment of cycling aerodynamic performance compared to using isolated static leg simulations alone, a practice common in optimising the aerodynamics of cyclists through computational fluid dynamics.

Author(s):  
Shian Chi ◽  
John Pitman ◽  
Tim Crouch ◽  
David Burton ◽  
Mark Thompson

The aerodynamic efficiency of an elite cyclist is often evaluated and optimised using either one or a combination of field testing, wind-tunnel testing and numerical simulation. This study focuses on the processes and limitations involved in using a body scan to produce an accurate geometry for input to numerical simulation, with validation through drag comparisons from wind-tunnel tests and vortical wake-flow features reported in previous experimental studies. Transitional Shear Stress Transport Reynolds-Averaged Navier-Stokes simulations based on the scanned geometry were undertaken for a 180 ° half crank cycle at 15 ° increments. The sectional drag force contributions of 23 body subparts are presented, documenting the contribution and variation of each body/cycle component over the cycle. These methods are evaluated and the limitations of the approaches are discussed. The results from the numerical simulation and the wind tunnel measured drag force were very similar, differing by approximately 1%–7% for various crank angles.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Seongil Kang ◽  
Sangyeol Song ◽  
Joosang Lee ◽  
Hyekyung Chang ◽  
Sanghun Lee

Objectives. Several experimental studies have reported antiobesity and lipid-improving effects of Citrus unshiu. However, clinical studies on its effects are lacking. This study was designed to evaluate the impact of Citrus unshiu peel pellet (CUPP) on obesity and lipid profile. Methods. For 118 patients with body mass index (BMI) > 23 who took Citrus unshiu peel pellet (CUPP) for 4 weeks in a Public Health Center, laboratory and biometric readings before and after CUPP administration were analyzed. Results. Mean age of these subjects was 53.8±10.6 years (range: 18-75 years). There were 88 (74.6%) females in the study sample (n = 118). A significant (p < 0.01) decrease in BMI from 27.47±2.24 to 27.27±2.22 was observed in all subjects after CUPP treatment and 65.3% (N = 77) of them lost 1.03±0.83 kg of weight after 4 weeks of treatment. Total cholesterol level was significantly (p < 0.01) decreased from 204.0±37.4 mg/dL to 193.5±36.5 mg/dL. Significant (p < 0.05) decreases in levels of low-density lipoprotein, cholesterol, and triglyceride were also observed. Conclusions. These results suggest that CUPP in practice could help weight control and improve total cholesterol level. Findings of this study provide clinical foundation for future large-scale trials to establish clinical benefits of CUPP.


2015 ◽  
Vol 782 ◽  
pp. 300-332 ◽  
Author(s):  
Fangfang Xie ◽  
Yue Yu ◽  
Yiannis Constantinides ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

We employ three-dimensional direct and large-eddy numerical simulations of the vibrations and flow past cylinders fitted with free-to-rotate U-shaped fairings placed in a cross-flow at Reynolds number $100\leqslant \mathit{Re}\leqslant 10\,000$. Such fairings are nearly neutrally buoyant devices fitted along the axis of long circular risers to suppress vortex-induced vibrations (VIVs). We consider three different geometric configurations: a homogeneous fairing, and two configurations (denoted A and AB) involving a gap between adjacent segments. For the latter two cases, we investigate the effect of the gap on the hydrodynamic force coefficients and the translational and rotational motions of the system. For all configurations, as the Reynolds number increases beyond 500, both the lift and drag coefficients decrease. Compared to a plain cylinder, a homogeneous fairing system (no gaps) can help reduce the drag force coefficient by 15 % for reduced velocity $U^{\ast }=4.65$, while a type A gap system can reduce the drag force coefficient by almost 50 % for reduced velocity $U^{\ast }=3.5,4.65,6$, and, correspondingly, the vibration response of the combined system, as well as the fairing rotation amplitude, are substantially reduced. For a homogeneous fairing, the cross-flow amplitude is reduced by about 80 %, whereas for fairings with a gap longer than half a cylinder diameter, VIVs are completely eliminated, resulting in additional reduction in the drag coefficient. We have related such VIV suppression or elimination to the features of the wake flow structure. We find that a gap causes the generation of strong streamwise vorticity in the gap region that interferes destructively with the vorticity generated by the fairings, hence disorganizing the formation of coherent spanwise cortical patterns. We provide visualization of the incoherent wake flow that leads to total elimination of the vibration and rotation of the fairing–cylinder system. Finally, we investigate the effect of the friction coefficient between cylinder and fairing. The effect overall is small, even when the friction coefficients of adjacent segments are different. In some cases the equilibrium positions of the fairings are rotated by a small angle on either side of the centreline, in a symmetry-breaking bifurcation, which depends strongly on Reynolds number.


Author(s):  
G. Bella ◽  
V. K. Krastev

The need for reliable CFD simulation tools is a key factor for today’s automotive industry, especially for what concerns aerodynamic design driven by critical factors such as the engine cooling system optimization and the reduction of drag forces, both limited by continuously changing stylistic constraints. The Ahmed body [1] is a simplified car model nowadays largely accepted as a test-case prototype of a modern passenger car because in its aerodynamic behavior is possible to recognize many of the typical features of a light duty vehicle. Several previous works have pointed out that the flow region which presents the major contribution to the overall aerodynamic drag, and which presents severe problems to numerical predictions and experimental studies as well, is the wake flow behind the vehicle model. In particular, a more exact simulation of the wake and separation process seems to be essential for the accuracy of drag predictions. In this paper a numerical investigation of flow around the Ahmed body, performed with the open-source CFD toolbox OpenFOAM®, is presented. Two different slant rear angle configurations have been considered and several RANS turbulence models, as well as different wall treatments, have been implemented on a hybrid unstructured computational grid. Pressure drag predictions and other flow features, especially in terms of flow structures and velocity field in the wake region, have been critically compared with the experimental data available in the literature and with some prior RANS-based numerical studies.


2012 ◽  
Vol 36 (6) ◽  
pp. 717-737 ◽  
Author(s):  
David A. Johnson ◽  
Ahmed Abdelrahman ◽  
Drew Gertz

The performance of a three bladed 3.3 m diameter turbine was measured unobtrusively in a large scale, controlled wind, open jet facility. Due to the scale of the facility blockage was very low in comparison to previous studies. The turbine blades utilized NREL S83X airfoils appropriate for the flow conditions and Reynolds number present in the facility. Airfoils were blended along the radial direction in a varying chord, varying twist blade design with a design coefficient of power ( Cp) peak at λ = 5.4. Simultaneous three component velocity measurements were obtained using a purpose built traverse at specific radial locations (segments) upstream and immediately downstream of the rotor plane. These velocities were utilized to determine blade element momentum (BEM) parameters and to predict the performance of the rotor. Comparisons are made to the limited number of experimental studies reported in the literature and with parameters derived from CFD numerical simulations. Measured radial velocities upstream of the rotor were near zero and uniform in the radial direction and were uniform and slightly larger downstream of the rotor indicating the BEM assumption of limited radial interaction between segments was acceptable and that the wake was expanding. Axial induction was most uniform in the radial direction at the design and peak Cp condition and area averaged values approached 1/3 but did not exceed this value. Tangential measured velocities, tangential induction and circulation show the impact of the nacelle and blade root location and the tip. An evaluation of the local angle of attack and two dimensional airfoil data at one radial location gave a reasonable comparison with other measured torque values. Rotor performance determined with this method was compared with electrical power measurements and previous BEM model predictions. The power derived from the BEM method outlined here closely followed electrical turbine power measurements although the method overpredicted the power likely due to the segment discretization in the tip region. The detail of these results should be useful to further understand the flow immediately downstream of a rotor in controlled conditions and provide detailed data for BEM model enhancement and future model development.


2020 ◽  
Vol 54 (1) ◽  
pp. 1-37 ◽  
Author(s):  
Marianne Nikolov ◽  
Veronika Timpe-Laughlin

AbstractGiven the exponential growth in the popularity of early foreign language programs, coupled with an emphasis of evidence-based instruction, assessing young learners’ (YLs) foreign language abilities has moved to center stage. This article canvasses how the field of assessing young learners of foreign languages has evolved over the past two decades. The review offers insights into how and why the field has developed, how constructs have been defined and operationalized, what language proficiency frameworks have been used, why children were assessed, what aspects of their foreign language proficiency have been assessed, who was involved in the assessment, and how the results have been used. By surveying trends in foreign language (FL) and content-based language learning programs involving children between the ages of 3 and 14, the article highlights research into assessment of and for learning, and critically discusses areas such as large-scale assessments and proficiency examinations, comparative and experimental studies, the impact of assessment, teachers’ beliefs and assessment practices, young learners’ test-taking strategies, age-appropriate tasks, alternative and technology-mediated assessment, as well as game-based assessments. The final section of the article highlights where more research is needed, thus outlining potential future directions for the field.


Volume 3 ◽  
2004 ◽  
Author(s):  
Jiongyang Wu ◽  
Wei Shyy ◽  
Stein T. Johansen

The widely used Reynolds-Averaged Navier-Stokes (RANS) approach, such as the k-ε two-equation model, has been found to over-predict the eddy viscosity and can dampen out the time dependent fluid dynamics in both single- and two-phase flows. To improve the predictive capability of this type of engineering turbulence closures, a consistent method is offered to bridge the gap between DNS, LES and RANS models. Based on the filter size, conditional averaging is adopted for the Navier-Stokes equation to introduce one more parameter into the definition of the eddy viscosity. Both time-dependent single-phase and cavitating flows are simulated by a pressure-based method and finite volume approach in the framework of the Favre-averaged equations coupled with the new turbulence model. The impact of the filter-based concept, including the filter size and grid dependencies, is investigated using the standard k-ε model and with the available experimental information.


2015 ◽  
Vol 17 (1) ◽  
pp. 245-255 ◽  
Author(s):  
Matteo Colli ◽  
Luca G. Lanza ◽  
Roy Rasmussen ◽  
Julie M. Thériault

Abstract The use of windshields to reduce the impact of wind on snow measurements is common. This paper investigates the catching performance of shielded and unshielded gauges using numerical simulations. In Part II, the role of the windshield and gauge aerodynamics, as well as the varying flow field due to the turbulence generated by the shield–gauge configuration, in reducing the catch efficiency is investigated. This builds on the computational fluid dynamics results obtained in Part I, where the airflow patterns in the proximity of an unshielded and single Alter shielded Geonor T-200B gauge are obtained using both time-independent [Reynolds-averaged Navier–Stokes (RANS)] and time-dependent [large-eddy simulation (LES)] approaches. A Lagrangian trajectory model is used to track different types of snowflakes (wet and dry snow) and to assess the variation of the resulting gauge catching performance with the wind speed. The collection efficiency obtained with the LES approach is generally lower than the one obtained with the RANS approach. This is because of the impact of the LES-resolved turbulence above the gauge orifice rim. The comparison between the collection efficiency values obtained in case of shielded and unshielded gauge validates the choice of installing a single Alter shield in a windy environment. However, time-dependent simulations show that the propagating turbulent structures produced by the aerodynamic response of the upwind single Alter blades have an impact on the collection efficiency. Comparison with field observations provides the validation background for the model results.


Author(s):  
Hyeonu Heo ◽  
Jaehyung Ju ◽  
Doo-Man Kim ◽  
Sangwa Rhie

An understanding of the flow around a tire in contact with the ground is important for when designing a fuel efficient tire as aerodynamic drag accounts for about one third of an entire vehicle’s rolling loss [1]. Recently, non-pneumatic tires (NPTs) have drawn attention mainly due to their low rolling resistance associated with the use of low viscoelastic materials in their construction. However, an NPT’s fuel efficiency should be re-evaluated in terms of aerodynamic drag: discrete flexible spokes in an NPT may cause more aerodynamic drag, resulting in greater rolling resistance. In this study, the aerodynamic flow around an NPT in contact with the ground is investigated for i) stationary and ii) rotating cases using the Reynolds-Averaged Navier-Stokes (RANS) method. The NPT has a more complex flow and a higher drag force than does the pneumatic counterpart.


2014 ◽  
Vol 14 (2) ◽  
pp. 1399-1442 ◽  
Author(s):  
R. J. Herbert ◽  
B. J. Murray ◽  
T. F. Whale ◽  
S. J. Dobbie ◽  
J. D. Atkinson

Abstract. In order to understand the impact of ice formation in clouds, a quantitative understanding of ice nucleation is required, along with an accurate and efficient representation for use in cloud resolving models. Ice nucleation by atmospherically relevant particle types is complicated by inter-particle variability in nucleating ability, as well as a stochastic, time-dependent, nature inherent to nucleation. Here we present a new and computationally efficient Framework for Reconciling Observable Stochastic Time-dependence (FROST) in immersion mode ice nucleation. This framework is underpinned by the finding that the temperature dependence of the nucleation rate coefficient controls the residence-time and cooling-rate dependence of freezing. It is shown that this framework can be used to reconcile experimental data obtained on different time scales with different experimental systems, and it also provides a simple way of representing the complexities of ice nucleation in cloud resolving models. The routine testing and reporting of time-dependent behaviour in future experimental studies is recommended, along with the practice of presenting normalised datasets following the methods outlined here.


Sign in / Sign up

Export Citation Format

Share Document