scholarly journals Spatial and seasonal variations in atmospheric aerosols over Nigeria: Assessment of influence of intertropical discontinuity movement

2019 ◽  
Vol 9 ◽  
pp. 175931311882030 ◽  
Author(s):  
Ayansina Ayanlade ◽  
Godwin Atai ◽  
Margaret Olusolape Jegede

This study examines the influence of intertropical discontinuity movement on seasonality and distribution of atmospheric aerosols over Nigeria, using remote sensing approach. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra aerosol optical depth, wind speed and precipitation/intertropical discontinuity (ITD) dataset were used. Geospatial interpolation model was used to analyse the aerosol seasonal distribution. Correlations analysis was used to evaluate the degree of influence of wind and ITD on the monthly distribution of aerosol. The results show significant variations in monthly mean distributions of aerosol, but the variation is much more extraordinary during Harmattan season than Wet and Dry seasons, with 0.29 ⩽ aerosol optical depth ⩾ 0.46. In other ecological zones, the highest mean aerosol optical depth values were observed in the months of December, January and February with 0.30 ⩽ aerosol optical depth ⩾ 0.60, with highest value in Sahel ecological zone. Generally, the results further show a strong relationship between aerosol optical depth distribution and migration of ITD with correlation r2 ⩾ 0.60 @ p = 0.05 mostly during Dry and Harmattan seasons but relatively low correlation r2 ⩽ 0.40 @ p = 0.05 during Wet season. The major findings of this study are that seasonal shifts in the location of the ITD considerably affect not only rainfall distribution, resulting in the Wet and Dry seasons in the study area, but also have significant impacts on atmospheric aerosol distributions. Although not all aerosols presented in this study are dust originated from Sahara desert, since biomass-burning activities frequently occur in the study area, the study concludes that satellite-based aerosol optical depth datasets continue to be advantageous to understand atmospheric aerosols distribution in a region where there is fewer ground aerosols data.

2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


2015 ◽  
Vol 8 (10) ◽  
pp. 4083-4110 ◽  
Author(s):  
R. C. Levy ◽  
L. A. Munchak ◽  
S. Mattoo ◽  
F. Patadia ◽  
L. A. Remer ◽  
...  

Abstract. To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March–April–May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.


2002 ◽  
Vol 62 (2) ◽  
pp. 339-346 ◽  
Author(s):  
J. RAGUSA-NETTO

Figs are a remarkable food resource to frugivores, mainly in periods of general fruit scarcity. Ficus calyptroceras Miq. (Moraceae) is the only fig species in a type of dry forest in western Brazil. In this study I examined the fruiting pattern as well as fig consumption by birds in F. calyptroceras. Although rainfall was highly seasonal, fruiting was aseasonal, since the monthly proportion of fruiting trees ranged from 4% to 14% (N = 50 trees). I recorded 22 bird species feeding on figs. In the wet season 20 bird species ate figs, while in the dry season 13 did. Parrots were the most important consumers. This group removed 72% and 40% of the figs consumed in the wet and dry seasons, respectively. No bird species increases fig consumption from dry to wet season. However, a group of bird species assumed as seed dispersers largely increases fig consumption from wet to dry season, suggesting the importance of this resource in the period of fruit scarcity. The results of this study points out the remarkable role that F. calyptroceras plays to frugivorous birds, in such a dry forest, since its fruits were widely consumed and were available all year round.


2007 ◽  
Vol 7 (4) ◽  
pp. 11797-11837 ◽  
Author(s):  
E. I. Kassianov ◽  
L. K. Berg ◽  
C. Flynn ◽  
S. McFarlane

Abstract. The objective of this study is to investigate, by observational means, the magnitude and sign of the actively discussed relationship between cloud fraction N and aerosol optical depth τa. Collocated and coincident ground-based measurements and Terra/Aqua satellite observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site form the basis of this study. The N–τa relationship occurred in a specific 5-year dataset of fair-weather cumulus (FWC) clouds and mostly non-absorbing aerosols. To reduce possible contamination of the aerosols on the cloud properties estimation (and vice versa), we use independent datasets of τa and N obtained from the Multi-filter Rotating Shadowband Radiometer (MFRSR) measurements and from the ARM Active Remotely Sensed Clouds Locations (ARSCL) value-added product, respectively. Optical depth of the FWC clouds τcld and effective radius of cloud droplets re are obtained from the MODerate resolution Imaging Spectroradiometer (MODIS) data. We found that relationships between cloud properties (N,τcld, re) and aerosol optical depth are time-dependent (morning versus afternoon). Observed time-dependent changes of cloud properties, associated with aerosol loading, control the variability of surface radiative fluxes. In comparison with pristine clouds, the polluted clouds are more transparent in the afternoon due to smaller cloud fraction, smaller optical depth and larger droplets. As a result, the corresponding correlation between the surface radiative flux and τa is positive (warming effect of aerosol). Also we found that relationship between cloud fraction and aerosol optical depth is cloud size dependent. The cloud fraction of large clouds (larger than 1 km) is relatively insensitive to the aerosol amount. In contrast, cloud fraction of small clouds (smaller than 1 km) is strongly positively correlated with τa. This suggests that an ensemble of polluted clouds tends to be composed of smaller clouds than a similar one in a pristine environment. One should be aware of these time- and size-dependent features when qualitatively comparing N–τa relationships obtained from the satellite observations, surface measurements, and model simulations.


2020 ◽  
Author(s):  
Stephanie P. Rusli ◽  
Otto Hasekamp ◽  
Joost aan de Brugh ◽  
Guangliang Fu ◽  
Yasjka Meijer ◽  
...  

Abstract. Atmospheric aerosols have been known to be a major source of uncertainties in CO2 concentrations retrieved from space. In this study, we investigate the added value of multi-angle polarimeter (MAP) measurements in the context of the Copernicus candidate mission for anthropogenic CO2 monitoring (CO2M). To this end, we compare aerosol-induced XCO2 errors from standard retrievals using spectrometer only (without MAP) with those from retrievals using both MAP and spectrometer. MAP observations are expected to provide information about aerosols that is useful for improving XCO2 accuracy. For the purpose of this work, we generate synthetic measurements for different atmospheric and geophysical scenes over land, based on which XCO2 retrieval errors are assessed. We show that the standard XCO2 retrieval approach that makes no use of auxiliary aerosol observations returns XCO2 errors with an overall bias of 1.12 ppm, and a spread (defined as half of the 15.9th to the 84.1th percentile range) of 2.07 ppm. The latter is far higher than the required XCO2 accuracy (0.5 ppm) and precision (0.7 ppm) of the CO2M mission. Moreover, these XCO2 errors exhibit a significantly larger bias and scatter at high aerosol optical depth, high aerosol altitude, and low solar zenith angle, which could lead to a worse performance in retrieving XCO2 from polluted areas where CO2 and aerosols are co-emitted. We proceed to determine MAP instrument specifications in terms of wavelength range, number of viewing angles, and measurement uncertainties that are required to achieve XCO2 accuracy and precision targets of the mission. Two different MAP instrument concepts are considered in this analysis. We find that for either concept, MAP measurement uncertainties on radiance and degree of linear polarization should be no more than 3 % and 0.003, respectively. Adopting the derived MAP requirements, a retrieval exercise using both MAP and spectrometer measurements of the synthetic scenes delivers XCO2 errors with an overall bias of −0.004 ppm and a spread of 0.54 ppm, implying compliance with the CO2M mission requirements; the very low bias is especially important for proper emission estimates. For the test ensemble, we find effectively no dependence of the XCO2 errors on aerosol optical depth, altitude of the aerosol layer, and solar zenith angle. These results indicate a major improvement in the retrieved XCO2 accuracy with respect to the standard retrieval approach, which could lead to a higher data yield, better global coverage, and a more comprehensive determination of CO2 sinks and sources. As such, this outcome underlines the contribution of, and therefore the need for, a MAP instrument onboard the CO2M mission.


2019 ◽  
Vol 99 ◽  
pp. 01003
Author(s):  
Athina Avgousta Floutsi ◽  
Marios Bruno Korras Carraca ◽  
Christos Matsoukas ◽  
Nikos Hatzianastassiou ◽  
George Biskos

Central and South Asia are regions of particular interest for studying atmospheric aerosols, being among the largest sources of desert dust aerosols globally. In this study we use the newest collection (C061) of MODIS - Aqua aerosol optical depth (AOD) at 550 nm and Ångström exponent (a) at 412/470 nm over the 15-year period between 2002 and 2017, providing the longest analyzed dataset for this region. According to our results, during spring and summer, high aerosol load (AOD up to 1.2) consisting of coarse desert dust particles, as indicated by a values as low as 0.15, is observed over the Taklamakan, Thar and Registan deserts and the region between the Aral and Caspian seas. The dust load is much lower during winter and autumn (lower AOD and higher a values compared to the other seasons). The interannual variation of AOD and a suggests that the dust load exhibits large decreasing trends (AOD slopes down to -0.22, a slopes up to 0.47 decade-1) over the Thar desert and large increasing trends between the Aral and Caspian seas (AOD and a slopes up to 0.23 decade-1 and down to -0.61 decade-1, respectively.) The AOD data are evaluated against AERONET surface-based measurements. Generally, MODIS and AERONET data are in good agreement with a correlation coefficient (R) equal to 0.835.


2020 ◽  
Vol 12 (7) ◽  
pp. 1102
Author(s):  
Bin Zou ◽  
Ning Liu ◽  
Wei Wang ◽  
Huihui Feng ◽  
Xiangping Liu ◽  
...  

Current reported spatiotemporal solutions for fusing multisensor aerosol optical depth (AOD) products used to recover gaps either suffer from unacceptable accuracy levels, i.e., fixed rank smooth (FRS), or high time costs, i.e., Bayesian maximum entropy (BME). This problem is generally more serious when dealing with multiple AOD products in a long time series or over large geographic areas. This study proposes a new, effective, and efficient enhanced FRS method (FRS-EE) to fuse satellite AOD products with uncertainty constraints. AOD products used in the fusion experiment include Moderate Resolution Imaging SpectroRadiometer (MODIS) DB/DT_DB_Combined AOD and Multiangle Imaging SpectroRadiometer (MISR) AOD across mainland China from 2016 to 2017. Results show that the average completeness of original, initial FRS fused, and FRS-EE fused AODs with uncertainty constraints are 22.80%, 95.18%, and 65.84%, respectively. Although the correlation coefficient (R = 0.77), root mean square error (RMSE = 0.30), and mean bias (Bias = 0.023) of the initial FRS fused AODs are relatively lower than those of original AODs compared to Aerosol Robotic Network (AERONET) AOD records, the accuracy of FRS-EE fused AODs, which are R = 0.88, RMSE = 0.20, and Bias = 0.022, is obviously improved. More importantly, in regions with fully missing original AODs, the accuracy of FRS-EE fused AODs is close to that of original AODs in regions with valid retrievals. Meanwhile, the time cost of FRS-EE for AOD fusion was only 2.91 h; obviously lower than the 30.46 months taken for BME.


2020 ◽  
pp. 175815592096320
Author(s):  
Alemayehu Shiferaw ◽  
Dereje Yazezew

The diversity, distribution, and relative abundance of avifauna were studied at and Around Ansas Dam, Debre Berhan Town, Ethiopia, from early September 2018 to early February 2019, covering both wet and dry seasons. Line transect technique was employed to study the diversity, abundance and distribution of birds species in the farmland site while total count employed on the dam. Data were collected in both wet and dry seasons from 6:30 to10:00 early morning and 15:30 to 18.00 late afternoon, when birds are more active. The data were analyzed with Shannon-Weiner Index, Simpson Index, Evenness Index, and relative abundance. A total of 45 bird species (35 in the dam and 22 in the farmland) belonging to nine orders and 21 families were recorded during the study period. Order Passeriformes (37.8%) followed by order Charadriformes (24.4%) were represented highest number. From all identified species at Ansas Dam and surrounding farmland, Abyssinian longclaw, Black-headed siskins, White-tailed swallow, Blue-winged goose, and Spot-breasted lapwing were endemic birds to Ethiopia. The highest Shannon diversity (H′ = 2.1) was recorded in dam during the dry season while the lowest (H′ = 1.78) was recorded during wet season in farmland. However, the Simpson diversity Index of avian species indicated relatively higher avian species diversity during the dry season in dam (D = 0.80) than farmland (D = 0.71) habitat. Evenness was highest in the dam (E = 0.65) and lowest in the farmland (E = 0.58) habitat. More avian species similarity (SI = 0.42) at farmland and dam habitat during the wet season but least similarity (SI = 0.2) was observed during the dry season. Most birds had scored rare in the ordinal scale while few species with abundant and uncommon ranks in both habitats and seasons. Conservation of the different charismatic bird species should be taken as an important component of wildlife management plan in the area.


2016 ◽  
Vol 9 (11) ◽  
pp. 5575-5589 ◽  
Author(s):  
Yerong Wu ◽  
Martin de Graaf ◽  
Massimo Menenti

Abstract. Aerosol optical depth (AOD) product retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) measurements has greatly benefited scientific research in climate change and air quality due to its high quality and large coverage over the globe. However, the current product (e.g., Collection 6) over land needs to be further improved. The is because AOD retrieval still suffers large uncertainty from the surface reflectance (e.g., anisotropic reflection) although the impacts of the surface reflectance have been largely reduced using the Dark Target (DT) algorithm. It has been shown that the AOD retrieval over dark surface can be improved by considering surface bidirectional distribution reflectance function (BRDF) effects in previous study. However, the relationship of the surface reflectance between visible and shortwave infrared band that applied in the previous study can lead to an angular dependence of the AOD retrieval. This has at least two reasons. The relationship based on the assumption of isotropic reflection or Lambertian surface is not suitable for the surface bidirectional reflectance factor (BRF). However, although the relationship varies with the surface cover type by considering the vegetation index NDVISWIR, this index itself has a directional effect and affects the estimation of the surface reflection, and it can lead to some errors in the AOD retrieval. To improve this situation, we derived a new relationship for the spectral surface BRF in this study, using 3 years of data from AERONET-based Surface Reflectance Validation Network (ASRVN). To test the performance of the new algorithm, two case studies were used: 2 years of data from North America and 4 months of data from the global land. The results show that the angular effects of the AOD retrieval are largely reduced in most cases, including fewer occurrences of negative retrievals. Particularly, for the global land case, the AOD retrieval was improved by the new algorithm compared to the previous study and MODIS Collection 6 DT algorithm, with the increase of 2.0 and 4.5 % AOD retrievals falling within the expected accuracy envelope ±(0.05 + 15 %), respectively. This implies that the users can get more accurate data without angular bias, i.e., more meaningful AOD data.


Sign in / Sign up

Export Citation Format

Share Document