scholarly journals Ayurvedic Medicinal Plants Against COVID-19: An In Silico Analysis

2021 ◽  
Vol 16 (11) ◽  
pp. 1934578X2110567
Author(s):  
Bharat Krushna Khuntia ◽  
Vandna Sharma ◽  
Sahar Qazi ◽  
Soumi Das ◽  
Shruti Sharma ◽  
...  

Even after one and a half years since the outbreak of COVID-19, its complete and effective control is still far from being achieved despite vaccination drives, symptomatic management with available drugs, and wider lockdowns. This has inspired researchers to screen potential phytochemicals from medicinal plants against SARS-CoV-2, adopting a bio-informatics approach. The current study aimed to assess anti-viral activity of the phytochemicals derived from Ayurvedic medicinal plants against SARS-CoV-2 drug targets [3-chymotrypsin-like protease (3CLpro) and RNA dependent RNA polymerase (RdRp)] using validated in silico methods.3D Structures of 196 phytochemicals from three Ayurvedic plants were retrieved from PubChem and KNApSAcK databases and screened for Absorption Distribution Metabolism Excretion and Toxicity(ADMET) to predict drug-likeness. The phytochemicals were subjected to molecular docking and only three showed promise: Acetovanillonewith a binding affinity of −4.7Kcal/mol with RdRp and −4.1 Kcal/mol with 3CL pro; myrtenol with equivalent values of −4.3 Kcal/mol with RdRP and −3.2 Kcal/mol with 3CLpro; and nimbochalcin with equivalent values of −5.0Kcal/mol with RdRp and −4.9 Kcal/mol with 3CLpro. Molecular dynamics simulation (50ns) analysis was made of 3CLpro and RdRp using Autodock Vina 1.1.2 software and VMD software. After ADMET analysis, 78 phytochemicals were found suitable for molecular docking. Three, namely acetovanillone, myrtenol and nimbochalcin from Picrorhiza kurroa, Azadirachta indica and Cyperus rotundus,respectively,exhibited good binding affinity with 3CLproand RdRp of SARS-CoV-2. Interaction analysis, molecular dynamics simulations and MM-PBSA calculations were executed for two complexes, acetovanillone_RdRp and myrtenol_3CL pro.Acetovanillone_RdRpcomplex did not display any structural change after MD simulation as compared to myrtenol_3CL pro. The overall stability of acetovanillone_6NUR was 154.7 kJ/mol, and for myrtenol_1UJ1 90.5 kJ/mol. In silico analysis revealed that acetovanillone ( Picrorhiza kurroa) and myrtenol ( Cyperus rotundus) possess anti SARS-CoV-2 activity. Further studies are needed to validate their efficacy in biological models.

Author(s):  
Aldina Amalia Nur Shadrina ◽  
Yetty Herdiyati ◽  
Ika Wiani ◽  
Mieke Hemiawati Satari ◽  
Dikdik Kurnia

Background: Streptococcus sanguinis can contribute to tooth demineralization, which can lead to dental caries. Antibiotics used indefinitely to treat dental caries can lead to bacterial resistance. Discovering new antibacterial agents from natural products like Ocimum basilicum will help combat antibiotic resistance. In silico analysis (molecular docking) can help determine the lead compound by studying the molecular interaction between the drug and the target receptor (MurA enzyme and DNA gyrase). It is a potential candidate for antibacterial drug development. Objective: The research objective is to isolate the secondary metabolite of O. basilicum extract that has activity against S. sanguinis through in vitro and in silico analysis. Methods: n-Hexane extract of O. basilicum was purified by combining column chromatography with bioactivity-guided. The in vitro antibacterial activity against S. sanguinis was determined using the disc diffusion and microdilution method, while molecular docking simulation of nevadensin (1) with MurA enzyme and DNA gyrase was performed used PyRx 0.8 program. Results: Nevadensin from O. basilicum was successfully isolated and characterized by spectroscopic methods. This compound showed antibacterial activity against S. sanguinis with MIC and MBC values of 3750 and 15000 μg/mL, respectively. In silico analysis showed that the binding affinity to MurA was -8.5 Kcal/mol, and the binding affinity to DNA gyrase was -6.7 Kcal/mol. The binding of nevadensin-MurA is greater than fosfomycin-MurA. Otherwise, Nevadensin-DNA gyrase has a weaker binding affinity than fluoroquinolone-DNA gyrase and chlorhexidine-DNA gyrase. Conclusion: Nevadensin showed potential as a new natural antibacterial agent by inhibiting the MurA enzyme rather than DNA gyrase.


Author(s):  
Ashis Kumar Goswami ◽  
Hemanta Kumar Sharma ◽  
Neelutpal Gogoi ◽  
Ankita Kashyap ◽  
Bhaskar Jyoti Gogoi

Background: Malaria is caused by different species of Plasmodium; among which P. falciparum is the most severe. Coptis teeta is an ethnomedicinal plant of enormous importance for tribes of north east India. Objective: In this study, the anti malarial activity of the methanol extracts of Coptis teeta was evaluated in vitro and lead identification via in silico study. Method: On the basis of the in vitro results, in silico analysis by application of different modules of Discovery Studio 2018 was performed on multiple targets of P. falciparum taking into consideration some of the compounds reported from C. teeta. Results: The IC50 of the methanol extract of Coptis teeta 0.08 µg/ml in 3D7 strain and 0.7 µg/ml in Dd2 strain of P. falciparum. From the docking study, noroxyhydrastatine was observed to have better binding affinity in comparison to chloroquine. The binding of noroxyhydrastinine with dihydroorotate dehydrogenase was further validated by molecular dynamics simulation and was observed to be significantly stable in comparison to the co-crystal inhibitor. During simulations it was observed that noroxyhydrastinine retained the interactions, giving strong indications of its effectiveness against the P. falciparum proteins and stability in the binding pocket. From the Density-functional theory analysis, the band gap energy of noroxyhydrastinine was found to be 0.186 Ha indicating a favourable interaction. Conclusion: The in silico analysis as an addition to the in vitro results provide strong evidence of noroxyhydrastinine as an anti malarial agent.


2020 ◽  
Author(s):  
Naruka Solomon Yakubu ◽  
Olanike Catherine Poyi ◽  
Ezikiel Olabisi Afolabi

Abstract Computer-aided drug design has been an effective strategy and approach to discover, develop, analyze, accelerate and economize design and development of drugs and biologically active molecules. A total of twelve analogues of chloroquine (CQ) and hydroxychloroquine (HCQ) were designed and virtually analyzed using PyRx software, Molinspiration, Swiss ADME, Swiss-Target Prediction software and ProTox-II-Prediction of toxicity platform. Based on the docking studies carried out using Autodock vina, five analogues; H-368 (-6.0 Kcal/mol), H-372 (--6.0 Kcal/mol), H-156 (-5.9 Kcal/mol), H-139 (-5.7 Kcal/mol), C-136 (-5.7 Kcal/mol) exhibited higher binding affinity compared to HCQ(-5.5 Kcal/mol), while all twelve analogues exhibited higher binding affinity compared to CQ (-4.5Kcal/mol). In silico analysis of toxicity profile of this analogues shows a lower potential to toxicity and a comparable activity on some major isoforms of cytochrome P450. But unlike the parent molecules, both H-139 and H-156 are substrates of P-glycoproteins (P-gp) which implies that these analogues possess high clearance and less pharmacokinetic-related drug-drug interactions compared to the parent molecules. Herein we propose these analogues as potential inhibitors or lead compounds against the coronavirus with a view of conducting more molecular dynamic simulations, synthesizing and conducting in vitro studies on them.


Author(s):  
RAMÀKRISHNAMACHARYA CH ◽  
VANITHA MURALIKUMAR ◽  
CHANDRASEKAR SESHACHALAM

COVID 19 caused by SARS-CoV-2 is spreading worldwide and affected 10 million people with a mortality rate between 0.5 % to 5%. Medicinal plants from China, Morocco, Algeria, Africa and India were tested for antiviral efficacy in SARS-CoV-2. Ayurveda Medicine described many medicinal plants. The Nimba ( Azadirachta indica A. Juss) is used in fever, bacterial and viral infections, and Amrita ( Tinospora cordifolia (Thunb.) Miers) is used as antiviral, antipyretic, and anti-inflammatory purposes. The combination of both these plants is called Nimbamritam, and it is widely used in pyrexia, dermatitis, viral infections, etc. Spike protease (PDB ID 6VXX) and M pro (PDB ID 6LU) were retrieved from RCSB and 16 ligands from A. indica and 6 ligands from T. cordifolia were obtained from IMPPAT and PubChem. AutoDock Vina embedded PyRx was used for docking. Remdesivir was taken as a reference drug. In silico study of Cordifolide A of T cordifolia showed the highest scores with -8.2 Kcal/mol and -10.3Kcal/mol with M pro protease and Spike protease respectively. Cordifolide A had 4 H bonds and Kaempferol had 7 non-conventional bonds, including van der Waal with M pro (6LU7) protease. The interactions with 6VXX had 5 H bonds in each ligand Cordifolide A and Azadirachtin B. The prevention of virus entry by targeting spike protease host receptor ACE2 and restricting replication of the viral genome by targeting M pro residues were identified in our study. A. indica and T. cordifolia are promising therapeutic agents in COVID 19.


Sign in / Sign up

Export Citation Format

Share Document