scholarly journals Tissue Tropism of SV40 Transformation of Human Cells: Role of the Viral Regulatory Region and of Cellular Oncogenes

2010 ◽  
Vol 1 (10) ◽  
pp. 1008-1020 ◽  
Author(s):  
L. Zhang ◽  
F. Qi ◽  
G. Gaudino ◽  
O. Strianese ◽  
H. Yang ◽  
...  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


2021 ◽  
pp. 104832
Author(s):  
Rafael Marchi ◽  
Bruna Sugita ◽  
Ariana Centa ◽  
Aline S. Fonseca ◽  
Stefanne Bortoletto ◽  
...  

2008 ◽  
Vol 228 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Takafumi Ochi ◽  
Kayoko Kita ◽  
Toshihide Suzuki ◽  
Alice Rumpler ◽  
Walter Goessler ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Luíza Silva Rocha ◽  
Josilene Ramos Pinheiro ◽  
Thamilin Costa Nakamura ◽  
José Domingos Santos da Silva ◽  
Beatriz Gonçalves Silva Rocha ◽  
...  

AbstractIt is not clear if COVID-19 can be indirectly transmitted. It is not possible to conclude the role of the environment in transmission of SARS-CoV-2 without studying areas in which people transit in great numbers. In this work we aimed to better understand the role of environment in the spread of COVID-19. We investigated the presence of SARS-CoV-2 in fomites as well as in the air and in the sewage using RT-qPCR. We studied both, a reference market area and a COVID-19 reference hospital at Barreiras city, Brazil. We collected and analyzed a total of 418 samples from mask fronts, cell phones, paper money, card machines, sewage, air and bedding during the ascendant phase of the epidemiological curve of COVID-19 in Barreiras. As a result, we detected the human RNAse P gene in most of samples, which indicates the presence of human cells or their fragments in specimens. However, we did not detect any trace of SARS-CoV-2 in all samples analyzed. We conclude that, so far, the environment and inanimate materials did not have an important role in COVID-19 transmission in Barreiras city. Therefore, similar results can probably be found in other cities, mainly those with COVID-19 epidemiological scenarios similar to that of Barreiras city. Our study is a small piece indicating the possibility that fomites and the environment do not have an important role in COVID-19 transmission. However, further studies are necessary to better understand the world scenario.


2009 ◽  
Vol 182 (4) ◽  
pp. 2395-2404 ◽  
Author(s):  
Max Tze-Han Huang ◽  
Debra J. Taxman ◽  
Elizabeth A. Holley-Guthrie ◽  
Chris B. Moore ◽  
Stephen B. Willingham ◽  
...  

2020 ◽  
Author(s):  
Sergej Franz ◽  
Thomas Zillinger ◽  
Fabian Pott ◽  
Christiane Schüler ◽  
Sandra Dapa ◽  
...  

AbstractInterferon-induced transmembrane (IFITM) proteins restrict infection by enveloped viruses through interfering with membrane fusion and virion internalisation. The role of IFITM proteins during alphaviral infection of human cells and viral counteraction strategies remain largely unexplored. Here, we characterized the impact of IFITM proteins and variants on entry and spread of Chikungunya virus (CHIKV) and Mayaro virus (MAYV) in human cells, and provide first evidence for a CHIKV-mediated antagonism of IFITM proteins. IFITM1, 2 and 3 restricted infection at the level of alphavirus glycoprotein-mediated entry, both in the context of direct infection and during cell-to-cell transmission. Relocalization of normally endosomal IFITM3 to the plasma membrane resulted in the loss of its antiviral activity. rs12252-C, a naturally occurring variant of IFITM3 that has been proposed to associate with severe influenza in humans, restricted CHIKV, MAYV and influenza A virus infection as efficiently as wild-type IFITM3. Finally, all antivirally active IFITM variants displayed reduced cell surface levels in CHIKV-infected cells involving a posttranscriptional process mediated by one or several non-structural protein(s) of CHIKV.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2164
Author(s):  
Veronika J. M. Breitkopf ◽  
Gerhard Dobler ◽  
Peter Claus ◽  
Hassan Y. Naim ◽  
Imke Steffen

Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway has been hypothesized to support flavivirus replication by increasing protein and lipid biogenesis. Here, we investigated the role of the UPR in TBFV infection in human astrocytes, neuronal and intestinal cell lines that had been infected with tick-borne encephalitis virus (TBEV) strains Neudoerfl and MucAr-HB-171/11 as well as Langat virus (LGTV). Both TBEV strains replicated better than LGTV in central nervous system (CNS) cells. TBEV strain MucAr-HB-171/11, which is associated with gastrointestinal symptoms, replicated best in intestinal cells. All three viruses activated the inositol-requiring enzyme 1 (IRE1) pathway via the X-box binding protein 1 (XBP1). Interestingly, the neurotropic TBEV strain Neudoerfl induced a strong upregulation of XBP1 in all cell types, but with faster kinetics in CNS cells. In contrast, TBEV strain MucAr-HB-171/11 failed to activate the IRE1 pathway in astrocytes. The low pathogenic LGTV led to a mild induction of IRE1 signaling in astrocytes and intestinal cells. When cells were treated with IRE1 inhibitors prior to infection, TBFV replication in astrocytes was significantly reduced. This confirms a supporting role of the IRE1 pathway for TBFV infection in relevant viral target cells and suggests a correlation between viral tissue tropism and the cell-type dependent induction of the unfolded protein response.


2004 ◽  
Vol 298 (2) ◽  
pp. 584-592 ◽  
Author(s):  
Chieko Wano ◽  
Kazuko Kita ◽  
Shunji Takahashi ◽  
Shigeru Sugaya ◽  
Mizuki Hino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document