scholarly journals Cyclophilin A as a target in the treatment of cytomegalovirus infections

2018 ◽  
Vol 26 ◽  
pp. 204020661881141 ◽  
Author(s):  
Ashwaq A Abdullah ◽  
Rasedee Abdullah ◽  
Zeenathul A Nazariah ◽  
Krishnan N Balakrishnan ◽  
Faez Firdaus J Abdullah ◽  
...  

Background Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. Methods Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. Results Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. Conclusion Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.

2009 ◽  
Vol 11 (5) ◽  
pp. 730-741 ◽  
Author(s):  
Xiaoling Liu ◽  
Lei Sun ◽  
Maorong Yu ◽  
Zengfu Wang ◽  
Chongfeng Xu ◽  
...  

1993 ◽  
Vol 13 (8) ◽  
pp. 4760-4769
Author(s):  
R J Bram ◽  
D T Hung ◽  
P K Martin ◽  
S L Schreiber ◽  
G R Crabtree

The immunosuppressants cyclosporin A (CsA) and FK506 appear to block T-cell function by inhibiting the calcium-regulated phosphatase calcineurin. While multiple distinct intracellular receptors for these drugs (cyclophilins and FKBPs, collectively immunophilins) have been characterized, the functionally active ones have not been discerned. We found that overexpression of cyclophilin A or B or FKBP12 increased T-cell sensitivity to CsA or FK506, respectively, demonstrating that they are able to mediate the inhibitory effects of their respective immunosuppressants in vivo. In contrast, cyclophilin C, FKBP13, and FKBP25 had no effect. Direct comparison of the Ki of each drug-immunophilin complex for calcineurin in vitro revealed that although calcineurin binding was clearly necessary, it was not sufficient to explain the in vivo activity of the immunophilin. Subcellular localization was shown also to play a role, since gene deletions of cyclophilins B and C which changed their intracellular locations altered their activities significantly. Cyclophilin B has been shown previously to be located within calcium-containing intracellular vesicles; its ability to mediate CsA inhibition implies that certain components of the signal transduction machinery are also spatially restricted within the cell.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Emily E. Ackerman ◽  
Eiryo Kawakami ◽  
Manami Katoh ◽  
Tokiko Watanabe ◽  
Shinji Watanabe ◽  
...  

ABSTRACTThe positions of host factors required for viral replication within a human protein-protein interaction (PPI) network can be exploited to identify drug targets that are robust to drug-mediated selective pressure. Host factors can physically interact with viral proteins, be a component of virus-regulated pathways (where proteins do not interact with viral proteins), or be required for viral replication but unregulated by viruses. Here, we demonstrate a method of combining human PPI networks with virus-host PPI data to improve antiviral drug discovery for influenza viruses by identifying target host proteins. Analysis shows that influenza virus proteins physically interact with host proteins in network positions significant for information flow, even after the removal of known abundance-degree bias within PPI data. We have isolated a subnetwork of the human PPI network that connects virus-interacting host proteins to host factors that are important for influenza virus replication without physically interacting with viral proteins. The subnetwork is enriched for signaling and immune processes distinct from those associated with virus-interacting proteins. Selecting proteins based on subnetwork topology, we performed an siRNA screen to determine whether the subnetwork was enriched for virus replication host factors and whether network position within the subnetwork offers an advantage in prioritization of drug targets to control influenza virus replication. We found that the subnetwork is highly enriched for target host proteins—more so than the set of host factors that physically interact with viral proteins. Our findings demonstrate that network positions are a powerful predictor to guide antiviral drug candidate prioritization.IMPORTANCEIntegrating virus-host interactions with host protein-protein interactions, we have created a method using these established network practices to identify host factors (i.e., proteins) that are likely candidates for antiviral drug targeting. We demonstrate that interaction cascades between host proteins that directly interact with viral proteins and host factors that are important to influenza virus replication are enriched for signaling and immune processes. Additionally, we show that host proteins that interact with viral proteins are in network locations of power. Finally, we demonstrate a new network methodology to predict novel host factors and validate predictions with an siRNA screen. Our results show that integrating virus-host proteins interactions is useful in the identification of antiviral drug target candidates.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Muhammad Mikail Athif Zhafir Asyura ◽  
Ahmad Fauzi ◽  
Fakhru Adlan Ayub

Introduction: Dengue Virus (DENV) is the pathogen for human dengue fever and is responsible for 390 million infections per year. The viral genome produces about 10 viral protein products, one of them being NS1. The NS1 protein plays a key role in viral replication and stimulation of humoral immune cells, thus being the perfect candidate to create an effective antiviral drug or vaccine for dengue Methods: Dengue Virus (DENV) is the pathogen for human dengue fever and is responsible for 390 million infections per year. The viral genome produces about 10 viral protein products, one of them being NS1. The NS1 protein plays a key role in viral replication and stimulation of humoral immune cells, thus being the perfect candidate to create an effective antiviral drug or vaccine for dengue Conclusion: The review established promising results of using peptide-based intervention on NS1. Further in vivo and randomized controlled trials are advised to solidify the applicability and biosafety of the intervention    


2011 ◽  
Vol 17 (2) ◽  
pp. S273-S274 ◽  
Author(s):  
G. Papanicolau ◽  
J. Kurtzberg ◽  
P. Westervelt ◽  
J. Gea-Banacloche ◽  
E. Warlick ◽  
...  

2005 ◽  
Vol 288 (1) ◽  
pp. F40-F47 ◽  
Author(s):  
Seiji Watanabe ◽  
Shuichi Tsuruoka ◽  
Soundarapandian Vijayakumar ◽  
Gunter Fischer ◽  
Yixin Zhang ◽  
...  

Cyclosporin A (CsA), a widely used immunosuppressant, causes distal renal tubular acidosis (dRTA). It exerts its immunosuppressive effect by a calcineurin-inhibitory complex with its cytosolic receptor, cyclophilin A. However, CsA also inhibits the peptidyl prolyl cis-trans isomerase (PPIase) activity of cyclophilin A. We studied HCO3− transport and changes in β-intercalated cell pH on luminal Cl− removal in isolated, perfused rabbit cortical collecting tubules (CCDs) before and after exposure to media pH 6.8 for 3 h. Acid incubation causes adaptive changes in β-intercalated cells by extracellular deposition of hensin ( J Clin Invest 109: 89, 2002). Here, CsA prevented this adaptation. The unidirectional HCO3− secretory flux, estimated as the difference between net flux and that after Cl− removal from the lumen, was −6.7 ± 0.2 pmol·min−1·mm−1 and decreased to −1.3 ± 0.2 after acid incubation. CsA in the bath prevented the adaptive decreases in HCO3− secretion and apical Cl−:HCO3− exchange. To determine the mechanism, we incubated CCDs with FK-506, which inhibits calcineurin activity independently of the host cell cyclophilin. FK-506 did not prevent the acid-induced adaptive decrease in unidirectional HCO3− secretion. However, [AD-Ser]8 CsA, a CsA derivative, which does not inhibit calcineurin but inhibits PPIase activity of cyclophilin A, completely blocked the effect of acid incubation on apical Cl−:HCO3− exchange. Acid incubation resulted in prominent “clumpy” staining of extracellular hensin and diminished apical surface of β-intercalated cells [smaller peanut agglutinin (PNA) caps]. CsA and [AD-Ser]8 CsA prevented most hensin staining and the reduction of apical surface; PNA caps were more prominent. We suggest that hensin polymerization around adapting β-intercalated cells requires the PPIase activity of cyclophilins. Thus CsA is able to prevent this adaptation by inhibition of a peptidyl prolyl cis-trans isomerase activity. Such inhibition may cause dRTA during acid loading.


2015 ◽  
Vol 89 (12) ◽  
pp. 6171-6183 ◽  
Author(s):  
Chia Min Lee ◽  
Xuping Xie ◽  
Jing Zou ◽  
Shi-Hua Li ◽  
Michelle Yue Qi Lee ◽  
...  

ABSTRACTFlavivirus NS4A protein induces host membrane rearrangement and functions as a replication complex component. The molecular details of how flavivirus NS4A exerts these functions remain elusive. Here, we used dengue virus (DENV) as a model to characterize and demonstrate the biological relevance of flavivirus NS4A oligomerization. DENV type 2 (DENV-2) NS4A protein forms oligomers in infected cells or when expressed alone. Deletion mutagenesis mapped amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]) of NS4A as the major determinant for oligomerization, while the N-terminal 50 residues contribute only slightly to the oligomerization. Nuclear magnetic resonance (NMR) analysis of NS4A amino acids 17 to 80 suggests that residues L31, L52, E53, G66, and G67 could participate in oligomerization. Ala substitution for 15 flavivirus conserved NS4A residues revealed that these amino acids are important for viral replication. Among the 15 mutated NS4A residues, 2 amino acids (E50A and G67A) are located within TMD1. Both E50A and G67A attenuated viral replication, decreased NS4A oligomerization, and reduced NS4A protein stability. In contrast, NS4A oligomerization was not affected by the replication-defective mutations (R12A, P49A, and K80A) located outside TMD1.transcomplementation experiments showed that expression of wild-type NS4A alone was not sufficient to rescue the replication-lethal NS4A mutants. However, the presence of DENV-2 replicons could partially restore the replication defect of some lethal NS4A mutants (L26A and K80A), but not others (L60A and E122A), suggesting an unidentified mechanism governing the outcome of complementation in a mutant-dependent manner. Collectively, the results have demonstrated the importance of TMD1-mediated NS4A oligomerization in flavivirus replication.IMPORTANCEWe report that DENV NS4A forms oligomers. Such NS4A oligomerization is mediated mainly through amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]). The biological importance of NS4A oligomerization is demonstrated by results showing that mutations of flavivirus conserved residues (E50A and G67A located within TMD1) reduced the oligomerization and stability of the NS4A protein, leading to attenuated viral replication. A systematic mutagenesis analysis demonstrated that flavivirus conserved NS4A residues are important for DENV replication. A successfultranscomplementation of replication-lethal NS4A mutant virus requires wild-type NS4A in the context of the viral replication complex. The wild-type NS4A protein alone is not sufficient to rescue the replication defect of NS4A mutants. Intriguingly, distinct NS4A mutants yielded different complementation outcomes in the replicon-containing cells. Overall, the study has enhanced our understanding of flavivirus NS4A at the molecular level. The results also suggest that inhibitor blocking of NS4A oligomerization could be explored for antiviral drug discovery.


Sign in / Sign up

Export Citation Format

Share Document