scholarly journals HTS-Compatible CometChip Enables Genetic Screening for Modulators of Apoptosis and DNA Double-Strand Break Repair

2020 ◽  
Vol 25 (8) ◽  
pp. 906-922
Author(s):  
Ian J. Tay ◽  
James J. H. Park ◽  
Anna L. Price ◽  
Bevin P. Engelward ◽  
Scott R. Floyd

Dysfunction of apoptosis and DNA damage response pathways often drive cancer, and so a better understanding of these pathways can contribute to new cancer therapeutic strategies. Diverse discovery approaches have identified many apoptosis regulators, DNA damage response, and DNA damage repair proteins; however, many of these approaches rely on indirect detection of DNA damage. Here, we describe a novel discovery platform based on the comet assay that leverages previous technical advances in assay precision by incorporating high-throughput robotics. The high-throughput screening (HTS) CometChip is the first high-throughput-compatible assay that can directly detect physical damage in DNA. We focused on DNA double-strand breaks (DSBs) and utilized our HTS CometChip technology to perform a first-of-its-kind screen using an shRNA library targeting 2564 cancer-relevant genes. Conditions of the assay enable detection of DNA fragmentation from both exogenous (ionizing radiation) and endogenous (apoptosis) sources. Using this approach, we identified LATS2 as a novel DNA repair factor as well as a modulator of apoptosis. We conclude that the HTS CometChip is an effective assay for HTS to identify modulators of physical DNA damage and repair.

2019 ◽  
Author(s):  
Guillaume Gaullier ◽  
Genevieve Roberts ◽  
Uma M. Muthurajan ◽  
Samuel Bowerman ◽  
Johannes Rudolph ◽  
...  

AbstractPoly(ADP-ribose) Polymerase 2 (PARP2) is one of three DNA-dependent PARPs involved in the detection of DNA damage. Upon binding to DNA double-strand breaks, PARP2 uses nicotinamide adenine dinucleotide to synthesize poly(ADP-ribose) (PAR) onto itself and other proteins, including histones. PAR chains in turn promote the DNA damage response by recruiting downstream repair factors. These early steps of DNA damage signaling are relevant for understanding how genome integrity is maintained and how their failure leads to genome instability or cancer. There is no structural information on DNA double-strand break detection in the context of chromatin. Here we present a cryo-EM structure of two nucleosomes bridged by human PARP2 and confirm that PARP2 bridges DNA ends in the context of nucleosomes bearing short linker DNA. We demonstrate that the conformation of PARP2 bound to damaged chromatin provides a binding platform for the regulatory protein Histone PARylation Factor 1 (HPF1), and that the resulting HPF1•PARP2•nucleosome complex is enzymatically active. Our results contribute to a structural view of the early steps of the DNA damage response in chromatin.


2021 ◽  
Author(s):  
Tobias Gleich ◽  
Manfredo Quadroni ◽  
Gökhan Yigit ◽  
Bernd Wollnik ◽  
Marcel Huber ◽  
...  

DNA double-strand breaks (DSBs) affect cell survival and genomic integrity. They are repaired by a highly coordinated process called the DNA damage response. Here, we report that the ubiquitously expressed nucleolar E3 ubiquitin ligase TRAF-interacting protein (TRAIP), previously shown to regulate the spindle assembly checkpoint, has an essential role during the DNA damage response. A biotinylation proximity screening assay (BioID) identified Ku80, Ku70, SMARCA5 (SNF2H) and DNA-PKcs as novel TRAIP interactors. Co-immunoprecipitations demonstrated that the interaction of TRAIP with Ku80 was transiently increased while the one with SMARCA5 was strongly decreased after treatment of HeLa cells with neocarzinostatin (NCS). Treatment of fibroblasts from a microcephalic primordial dwarfism patient carrying a hypomorphic TRAIP mutation or shRNA-mediated knockdown of TRAIP in HeLa cells with NCS impaired the activation of ataxia-telangiectasia mutated (ATM), a protein kinase crucial for the DNA damage response. As consequence, the maintenance of γH2AX and Chk2-T68 phosphorylation, two downstream targets of ATM, was significantly abrogated after NCS-inflicted DSBs. DNA repair assays showed that TRAIP inhibits incorrect end utilization during non-homologous end joining. These observations highlight TRAIP as novel regulator of ATM activity in DNA damage signaling.


2013 ◽  
Vol 33 (16) ◽  
pp. 3286-3298 ◽  
Author(s):  
Zhongqi Ge ◽  
Devi Nair ◽  
Xiaoyan Guan ◽  
Neha Rastogi ◽  
Michael A. Freitas ◽  
...  

The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.


Author(s):  
Chang-Jin Lee ◽  
Min-Ji Yoon ◽  
Dong Hyun Kim ◽  
Tae Uk Kim ◽  
Youn-Jung Kang

AbstractProfilin-1 (PFN1) regulates actin polymerization and cytoskeletal growth. Despite the essential roles of PFN1 in cell integration, its subcellular function in keratinocyte has not been elucidated yet. Here we characterize the specific regulation of PFN1 in DNA damage response and repair machinery. PFN1 depletion accelerated DNA damage-mediated apoptosis exhibiting PTEN loss of function instigated by increased phosphorylated inactivation followed by high levels of AKT activation. PFN1 changed its predominant cytoplasmic localization to the nucleus upon DNA damage and subsequently restored the cytoplasmic compartment during the recovery time. Even though γH2AX was recruited at the sites of DNA double strand breaks in response to DNA damage, PFN1-deficient cells failed to recruit DNA repair factors, whereas control cells exhibited significant increases of these genes. Additionally, PFN1 depletion resulted in disruption of PTEN-AKT cascade upon DNA damage and CHK1-mediated cell cycle arrest was not recovered even after the recovery time exhibiting γH2AX accumulation. This might suggest PFN1 roles in regulating DNA damage response and repair machinery to protect cells from DNA damage. Future studies addressing the crosstalk and regulation of PTEN-related DNA damage sensing and repair pathway choice by PFN1 may further aid to identify new mechanistic insights for various DNA repair disorders.


2018 ◽  
Vol 115 (51) ◽  
pp. E11961-E11969 ◽  
Author(s):  
Tai-Yuan Yu ◽  
Michael T. Kimble ◽  
Lorraine S. Symington

The Mre11-Rad50-Xrs2NBS1 complex plays important roles in the DNA damage response by activating the Tel1ATM kinase and catalyzing 5′–3′ resection at DNA double-strand breaks (DSBs). To initiate resection, Mre11 endonuclease nicks the 5′ strands at DSB ends in a reaction stimulated by Sae2CtIP. Accordingly, Mre11-nuclease deficient (mre11-nd) and sae2Δ mutants are expected to exhibit similar phenotypes; however, we found several notable differences. First, sae2Δ cells exhibit greater sensitivity to genotoxins than mre11-nd cells. Second, sae2Δ is synthetic lethal with sgs1Δ, whereas the mre11-nd sgs1Δ mutant is viable. Third, Sae2 attenuates the Tel1-Rad53CHK2 checkpoint and antagonizes Rad953BP1 accumulation at DSBs independent of Mre11 nuclease. We show that Sae2 competes with other Tel1 substrates, thus reducing Rad9 binding to chromatin and to Rad53. We suggest that persistent Sae2 binding at DSBs in the mre11-nd mutant counteracts the inhibitory effects of Rad9 and Rad53 on Exo1 and Dna2-Sgs1–mediated resection, accounting for the different phenotypes conferred by mre11-nd and sae2Δ mutations. Collectively, these data show a resection initiation independent role for Sae2 at DSBs by modulating the DNA damage checkpoint.


Genetics ◽  
2021 ◽  
Author(s):  
Tingting Li ◽  
Ruben C Petreaca ◽  
Susan L Forsburg

Abstract Chromatin remodeling is essential for effective repair of a DNA double strand break. KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA double strand break (DSB), including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination. These phenotypes of mst1 are similar to pht1-4KR, a non-acetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs towards homologous recombination pathways by modulating resection at the double strand break.


2009 ◽  
Vol 29 (13) ◽  
pp. 3597-3604 ◽  
Author(s):  
Nazmul Huda ◽  
Hiromi Tanaka ◽  
Marc S. Mendonca ◽  
David Gilley

ABSTRACT Protein kinases of the phosphatidylinositol 3-kinase-like kinase family, originally known to act in maintaining genomic integrity via DNA repair pathways, have been shown to also function in telomere maintenance. Here we focus on the functional role of DNA damage-induced phosphorylation of the essential mammalian telomeric DNA binding protein TRF2, which coordinates the assembly of the proteinaceous cap to disguise the chromosome end from being recognized as a double-stand break (DSB). Previous results suggested a link between the transient induction of human TRF2 phosphorylation at threonine 188 (T188) by the ataxia telangiectasia mutated protein kinase (ATM) and the DNA damage response. Here, we report evidence that X-ray-induced phosphorylation of TRF2 at T188 plays a role in the fast pathway of DNA DSB repair. These results connect the highly transient induction of human TRF2 phosphorylation to the DNA damage response machinery. Thus, we find that a protein known to function in telomere maintenance, TRF2, also plays a functional role in DNA DSB repair.


2018 ◽  
Vol 46 (5) ◽  
pp. 2479-2494 ◽  
Author(s):  
Yunfeng Lin ◽  
Liping Bai ◽  
Steven Cupello ◽  
Md Akram Hossain ◽  
Bradley Deem ◽  
...  

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Tomoaki Higo ◽  
Atsuhiko Naito ◽  
Masato Shibamoto ◽  
Jong-Kook Lee ◽  
Shungo Hikoso ◽  
...  

Introduction: The DNA damage response (DDR) pathway is activated upon DNA damage. In mitotic cells, the DDR plays essential role in maintaining genomic stability and preventing cancer formation. DNA damage and activation of the DDR are also observed in the post-mitotic cardiomyocytes of patients with end-stage heart failure, however, their roles in the pathogenesis of heart failure remains elusive. Methods and Results: We performed transverse aortic constriction (TAC) operation to produce mice model of pressure-overload induced heart failure. Alkaline- and neutral- comet assay revealed that unrepaired DNA single-strand break (SSB), not double-strand break, is accumulated in cardiomyocytes of the failing heart. Mice with cardiomyocyte-specific deletion of XRCC1, a scaffold protein essential for SSB repair, exhibited more severe heart failure and higher mortality after TAC operation. Knockdown of Xrcc1 using siRNA produced SSB accumulation in cardiomyocytes and SSB accumulation induced persistent DDR through activation of ataxia telangiectasia mutated (ATM) kinase. Activated ATM also induced nuclear translocation of NF-κB and increased the expression of inflammatory cytokines. Activation of DDR, nuclear translocation of NF-κB, and increased expression of inflammatory cytokines were also observed in the failing heart and were enhanced in the heart of cardiomyocyte-specific XRCC1 knockout mice. Conclusions: Unrepaired DNA SSB accumulates in post-mitotic cardiomyocytes and plays a pathogenic role in pressure overload-induced heart failure. Approaches that promote efficient SSB repair or suppress aberrant activation of DDR pathway may become a novel therapeutic strategy against heart failure.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoqiao Yue ◽  
Chenjun Bai ◽  
Dafei Xie ◽  
Teng Ma ◽  
Ping-Kun Zhou

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidylinositol 3-kinase related kinase family, which can phosphorylate more than 700 substrates. As the core enzyme, DNA-PKcs forms the active DNA-PK holoenzyme with the Ku80/Ku70 heterodimer to play crucial roles in cellular DNA damage response (DDR). Once DNA double strand breaks (DSBs) occur in the cells, DNA-PKcs is promptly recruited into damage sites and activated. DNA-PKcs is auto-phosphorylated and phosphorylated by Ataxia-Telangiectasia Mutated at multiple sites, and phosphorylates other targets, participating in a series of DDR and repair processes, which determine the cells’ fates: DSBs NHEJ repair and pathway choice, replication stress response, cell cycle checkpoints, telomeres length maintenance, senescence, autophagy, etc. Due to the special and multi-faceted roles of DNA-PKcs in the cellular responses to DNA damage, it is important to precisely regulate the formation and dynamic of its functional complex and activities for guarding genomic stability. On the other hand, targeting DNA-PKcs has been considered as a promising strategy of exploring novel radiosensitizers and killing agents of cancer cells. Combining DNA-PKcs inhibitors with radiotherapy can effectively enhance the efficacy of radiotherapy, offering more possibilities for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document