scholarly journals Testosterone immunoreactivity in the seminiferous epithelium of rat testis: effect of treatment with ethane dimethanesulfonate.

1989 ◽  
Vol 37 (11) ◽  
pp. 1667-1673 ◽  
Author(s):  
R Schulz ◽  
F Paris ◽  
P Lembke ◽  
V Blüm

Androgens drive spermatogenesis by processes that are largely unknown. Direct effects on germ cells and indirect effects mediated via testicular somatic elements are currently under consideration, and specific localization of androgens in seminiferous tubules may provide information as regards this. Adult male rats were injected with ethane dimethanesulfonate (EDS; 75 mg/kg body weight) or vehicle. Testes were fixed and paraffin-embedded for localization of testosterone immunoreactivity 1 and 2 weeks after treatment, using the unlabeled antibody (PAP) technique. Plasma testosterone dropped from a pre-treatment level of 2.3 ng/ml to below 0.2 ng/ml 3 days after EDS injection and remained at low levels until the end of observation, accompanied by a progressive decrease in testicular weight. In the seminiferous tubules of vehicle-injected males, testosterone immunoreactivity was found in nuclei of spermatocytes and spermatids and in nuclei and the cytoplasm of Sertoli cells, and showed typical variations according to the stage of spermatogenesis. One week after EDS treatment, immunoreactivity had disappeared from the seminiferous epithelium. Two weeks after treatment, staining of germ cells was detected in two out of four males. The disappearance and reappearance of immunoreactivity coincided with the time course of EDS effects on rat Leydig cells, and we conclude that it corresponds to androgen specifically localized in fixed, paraffin-embedded tissue. Because staining of germ cell nuclei varied with the stage of spermatogenesis, the technique may detect a physiologically relevant androgen fraction; its location suggests that androgens may also directly affect certain germ cell stages.

2008 ◽  
Vol 1 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Nikki P. Y. Lee ◽  
C. Yan Cheng

Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways.


Endocrinology ◽  
2002 ◽  
Vol 143 (6) ◽  
pp. 2399-2409 ◽  
Author(s):  
Cleida A. Oliveira ◽  
Qing Zhou ◽  
Kay Carnes ◽  
Rong Nie ◽  
David E. Kuehl ◽  
...  

Abstract Male rats, 30 d old, were treated with the antiestrogen ICI 182,780 (3–150 d) to determine sequences of events leading to testicular atrophy and infertility. Plasma testosterone and LH concentrations were unchanged. ICI 182,780 induced dilation of efferent ductules as early as 3 d post treatment, and the dilation increased over time, resulting in an overall increase of 200% in tubule diameter. A gradual reduction in height of the ductule epithelium was observed; however, the microvilli height increased up to d 73 but subsequently decreased. A transient increase in lysosomes in nonciliated cells was seen from d 15 to d 100. Testicular weight increased by d 45 and seminiferous tubules were dilated by d 52. These effects on testes persisted until d 100, but on d 150 the weight decreased and severe atrophy was observed. These testicular effects were probably owing to accumulation of fluid following inhibition of reabsorption in the efferent ductules, similar to the ER-α knockout mouse. In agreement with this conclusion, there was a decrease in Na+-H+ exchanger-3 mRNA and protein, which is consistent with previous studies showing that ER is required for expression of Na+-H+ exchanger-3 and ultimately fluid reabsorption in the efferent ductules.


Biology Open ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. bio056804
Author(s):  
Xianyu Zhang ◽  
Xin Zhao ◽  
Guoling Li ◽  
Mao Zhang ◽  
Pingping Xing ◽  
...  

ABSTRACTSpermatogonial stem cell (SSC) transplantation is an alternative reproductive method to achieve conservation and production of elite animals in livestock production. Creating a recipient animal without endogenous germ cells is important for effective SSC transplantation. However, natural mutants with depletion of SSCs are difficult to obtain, and drug ablation of endogenous germ cells is arduous to perform for practical use. In this study, we used mouse models to study the preparation of recipients with congenital germ cell ablation. We knocked out (KO) Ets-variant gene 5 (Etv5) in mice using the CRISPR/Cas9 system. The testicular weight of Etv5−/− mice was significantly lower than that of wild-type (WT) mice. The germ cell layer of the seminiferous tubules gradually receded with age in Etv5−/− mice. At 12 weeks of age, the tubules of Etv5−/− mice lacked almost all spermatogenic cells with a Sertoli cell-only phenotype, and sperm were completely absent in the epididymis. We subsequently transplanted allogeneic SSCs with enhanced green fluorescent protein (EGFP) into 3- (immature) or 7-week-old (mature) Etv5−/− mice. Partially restoration of germ cell layers in the seminiferous tubules and spermatogenesis was observed in all immature testes but not in mature adult testes at 2 months post-transplantation. The presence of heterologous genes Etv5 and EGFP in recipient testicular tissue and epididymal sperm by PCR indicated that sperm originated from the transplanted donor cells. Our study demonstrates that, although Etv5−/− mice could accommodate and support foreign germ cell transplantation, this process occurs in a quite low efficiency to support a full spermatogenesis of transplanted SSCs. However, using Etv5−/− mice as a recipient model for SSC transplantation is feasible, and still needs further investigation to establish an optimized transplantation process.


2020 ◽  
Author(s):  
Xianyu Zhang ◽  
Xin Zhao ◽  
Guoling Li ◽  
Mao Zhang ◽  
Pingping Xing ◽  
...  

AbstractTransplantation of spermatogonial stem cells (SSCs) is an alternative reproductive method to achieve conservation and production of elite animals in livestock production. Creating a recipient animal without endogenous germ cells is important for effective SSC transplantation. However, natural mutants with depletion of SSCs are difficult to obtain, and drug ablation of endogenous germ cells is arduous to perform for practical use. In this study, we used mouse models to study the preparation of recipients with congenital germ cell ablation. We knocked out (KO) Ets-variant gene 5 (Etv5) in mice using the CRISPR/Cas9 system. The testicular weight of Etv5-/- mice was significantly lower than that of wild-type (WT) mice. The germ cell layer of the seminiferous tubules gradually receded with age in Etv5-/- mice. At 12 weeks of age, the tubules of Etv5-/- mice lacked germ cells (Sertoli cell-only syndrome), and sperm were completely absent in the epididymis. We subsequently transplanted allogeneic SSCs with enhanced green fluorescent protein (EGFP) into 3-(immature) or 7-week-old (mature) Etv5-/- mice. Restoration of germ cell layers in the seminiferous tubules and spermatogenesis was observed in all immature testes but not in mature adult testes at 2 months post-transplantation. The presence of heterologous genes Etv5 and EGFP in recipient testicular tissue and epididymal sperm by PCR indicated that sperm originated from the transplanted donor cells. Our study demonstrates that, although Etv5-/- mice could accommodate and support foreign germ cell transplantation, this process occurs in a quite low efficiency to support a full spermatogenesis of transplanted SSCs. However, using Etv5-/- mice as a recipient model for SSC transplantation is feasible, and still needs further investigation to establish an optimized transplantation process.


2009 ◽  
Vol 78 (4) ◽  
pp. 615-620 ◽  
Author(s):  
Hayati Yuksel ◽  
Erkan Karadas ◽  
Hikmet Keles ◽  
Hasan Huseyin Demirel

In this study, experimentally lindane-induced histopathological changes and proliferation and/or apoptosis in germ cells in the rat testes were investigated. A total of 40 healthy fertile 3-month-old male rats were used. Animals were divided into 4 groups, each containing 10 rats. Group 1 (control) was given only pure olive oil, Groups 2, 3 and 4 were administered lindane at 10, 20 and 40 mg/kg/bw, respectively, by gastric gavage for 30 days. Microscopically, degenerative changes were observed in the lindane-treated groups. For proliferative activity PCNA immunolabelling and for germ cells apoptosis TUNEL methods were performed. Although a strong PCNA positivity in the control group was observed, a gradual decrease was noted in the lindane-treated groups especially at higher doses. Significant increases of apoptosis were seen in the lindane-treated groups compared to the control group. A decrease in testosterone concentrations was observed in lindane-treated groups compared to the control group. The study indicates that high-dose lindane intoxication contributes to the suppression of spermatogenesis through a reduction of germ cell proliferation and an increase of germ cell death in rat testes.


2013 ◽  
Vol 25 (1) ◽  
pp. 290 ◽  
Author(s):  
R. H. Powell ◽  
M. N. Biancardi ◽  
J. Galiguis ◽  
Q. Qin ◽  
C. E. Pope ◽  
...  

Spermatogonial stem cells (SSC), progenitor cells capable of both self-renewal and producing daughter cells that will differentiate into sperm, can be manipulated for transplantation to propagate genetically important males. This application was demonstrated in felids by the successful xeno-transplantation of ocelot mixed germ cells into the testes of domestic cats, which resulted in the production of ocelot sperm (Silva et al. 2012 J. Androl. 33, 264–276). Spermatogonial stem cells are in low numbers in the testis, but have been identified and isolated in different mammalian species using SSC surface markers; however, their expression varies among species. Until recently, little was known about the expression of SSC surface markers in feline species. We previously demonstrated that many mixed germ cells collected from adult cat testes express the germ cell markers GFRα1, GPR125, and C-Kit, and a smaller population of cells expresses the pluripotent SSC-specific markers SSEA-1 and SSEA-4 (Powell et al. 2011 Reprod. Fertil. Dev. 24, 221–222). In the present study, our goal was to identify germ cell and SSC-specific markers in SSC from cat testes. Immunohistochemical (IHC) localization of germ cell markers GFRα1, GPR125, and C-Kit and pluripotent SSC-specific markers SSEA-1, SSEA-4, TRA-1-60, TRA-1-81, and Oct-4 was detected in testis tissue from both sexually mature and prepubertal males. Testes were fixed with modified Davidson’s fixative for 24 h before processing, embedding, and sectioning. The EXPOSE Mouse and Rabbit Specific HRP/DAB detection IHC kit (Abcam®, Cambridge, MA, USA) was used for antibody detection. Staining for SSEA-1, SSEA-4, TRA-1-60, TRA-1-81, and Oct-4 markers was expressed specifically at the basement membrane of the seminiferous tubules in both adult and prepubertal testes. The GFRα1 and GPR125 markers were detected at the basement membrane of the seminiferous tubules and across the seminiferous tubule section. However, C-Kit was not detected in any cell. Using flow cytometry from a pool of cells from seven adult testes, we detected 45% GFRα1, 50% GPR125, 59% C-Kit, 18% TRA-1-60, 16% TRA-1-81 positive cells, and a very small portion of SSEA-1 (7%) and SSEA-4 (3%) positive cells. Dual staining of germ cells pooled from 3 testes revealed 3 distinct cell populations that were positive for GFRα1 only (23%), positive for both GFRα1 and SSEA-4 (6%), and positive for SSEA-4 only (1%). Our IHC staining of cat testes indicated that cells along the basement membrane of seminiferous tubules were positive for SSC-specific markers, and flow cytometry analysis revealed that there were different cell populations expressing both germ cell and SSC-specific markers. Flow cytometry results show overlapping germ cell populations expressing SSEA-4 and GFRα1, and IHC results reveal that SSEA-4 positive cells are spermatogonia, whereas GFRα1 positive cells include other stages of germ cells, indicating that the small population of cells positive only for SSEA-4 is undifferentiated cat SSC.


2009 ◽  
Vol 4 (10) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Kit-Lam Chan ◽  
Bin-Seng Low ◽  
Chin-Hoe Teh ◽  
Prashanta K. Das

The present study investigated the effects of a standardized methanol extract of E. longifolia Jack containing the major quassinoid constituents of 13α(21)-epoxyeurycomanone (1), eurycomanone (2), 13α,21-dihydroeurycomanone (3) and eurycomanol (4) on the epididymal spermatozoa profile of normal and Andrographis paniculata induced infertile rats. The standardized MeOH extract at doses of 50, 100 and 200 mg/kg, the EtOAc fraction (70 mg/kg), and standardized MeOH extract at 200 mg/kg co-administered with the EtOAc fraction of A. paniculata at 70 mg/kg were each given orally to male Sprague-Dawley albino rats for 48 consecutive days. The spermatozoa count, morphology, motility, plasma testosterone level and Leydig cell count of the animals were statistically analyzed by ANOVA with a post-hoc Tukey HSD test. The results showed that the sperm count of rats given the standardized MeOH extract alone at doses of 50, 100 and 200 mg/kg were increased by 78.9, 94.3 and 99.2 %, respectively when compared with that of control (p < 0.01). The low count, poor motility and abnormal morphology of the spermatozoa induced by the A. paniculata fraction were significantly reversed by the standardized MeOH extract of E. longifolia (p < 0.001). The plasma testosterone level of the rats treated with the standardized MeOH extract at 200 mg/kg was significantly increased (p < 0.01) when compared with that of the control and infertile animals. The spermatocytes in the seminiferous tubules and the Leydig cells appeared normal. Testosterone level was significantly higher in the testes (p < 0.01) than in the plasma after 30 days of oral treatment with the standardized MeOH extract. Interestingly, eurycomanone (2) alone was detected in the rat testis homogenates by HPLC-UV and confirmed by LC/MS, and may have contributed towards the improvement of sperm quality. Thus, the plant may potentially be suitable for the management of male infertility.


1989 ◽  
Vol 123 (3) ◽  
pp. 403-NP ◽  
Author(s):  
J. M. S. Bartlett ◽  
G. F. Weinbauer ◽  
E. Nieschlag

ABSTRACT Synchronization of spermatogenesis would provide an ideal model for the investigation of stage-dependent changes in the secretion of paracrine factors. In vitamin A-deficient animals subsequently injected with vitamin A, over 80% of seminiferous tubules were synchronized within three to five stages of the seminiferous cycle. Following replenishment of vitamin A, spermatogenic stages IV–VI (35 days), VI–VIII (38 days), IX–XII (41 days), I–IV (45 days) and V–VII (48 days) were observed. Despite synchronization of spermatogenesis at all stages, spermatogenesis was markedly impaired when evaluated in a quantitative fashion. At all times evaluated, numbers of round spermatids were reduced compared with age-matched controls. Numbers of pachytene spermatocytes reached control values only after 45 days of vitamin A replenishment. Elongate spermatids were almost totally absent up to 41 days after vitamin A replenishment. Testicular and epididymal weights were also reduced, although testicular weights showed a significant recovery over the time-course of the study. Serum and pituitary concentrations of LH and FSH were raised at the commencement of the study, with serum gonadotrophins returning to control values 48 days after vitamin A replenishment. Both testicular and serum testosterone concentrations in treated animals tended to be higher than in the controls. Although synchronization of spermatogenesis was achieved, testicular testosterone concentrations did not reflect the stage-dependent cyclical changes observed in earlier studies. Testicular concentrations of testosterone were raised throughout the period of observation with the exception of animals synchronized around stages II–IV of the spermatogenic cycle. No correlation between the most frequent stages and intratesticular testosterone was found (r = 0·06, P > 0·1). Previous observations that testosterone concentrations are selectively increased at stages VII–VIII of the spermatogenic cycle are not supported by the present study. Journal of Endocrinology (1989) 123, 403–412


2001 ◽  
Vol 20 (11) ◽  
pp. 585-589 ◽  
Author(s):  
P Kumar ◽  
A K Prasad ◽  
U Mani ◽  
B K Maji ◽  
K K Dutta

Trichloroethylene (TCE) is an organic solvent used in dry cleaning, metal degreasing, thinner for paints and varnishes, anesthetic agent, and so forth. Human beings are appreciably exposed to TCE vapours by inhalation route. The present study has been undertaken to investigate whether TCE inhalation may also bring about testicular toxic effects. Our results indicate that inhalation of TCE by male rats for 12 and 24 weeks brings about significant reduction in absolute testicular weight, and alters marker testicular enzymes activity associated with spermatogenesis and germ cell maturation, along with marked histopathological changes showing depletion of germs cells and spermatogenic arrest.


1968 ◽  
Vol 40 (3) ◽  
pp. 275-284 ◽  
Author(s):  
B. N. HEMSWORTH ◽  
H. JACKSON ◽  
A. L. WALPOLE

SUMMARY Impairment of pituitary function in male rats by I.C.I. 33,828 (1-α-methylallylthiocarbamoyl-2-methylthiocarbamoylhydrazine; methallibure) caused arrest of sperm iogenesis beyond step 8, without apparently interfering with the timing of the cycle of the seminiferous epithelium. In this respect there was a close similarity between the effect of the drug and that of hypophysectomy. Uninterrupted daily administration was required and after cessation of treatment, pituitary function was rapidly restored. The antifertility effect of the compound in male rats is due to reduced libido, arrest of spermiogenesis and possibly the induction of 'lethal mutations' in developing germ cells.


Sign in / Sign up

Export Citation Format

Share Document