Influence of vanadium on transformation characteristics of high-strength line-pipe steels

1981 ◽  
Vol 8 (1) ◽  
pp. 458-465 ◽  
Author(s):  
R. C. Cochrane ◽  
W. B. Morrison
Keyword(s):  
Author(s):  
Akihide Nagao ◽  
Nobuyuki Ishikawa ◽  
Toshio Takano

Cr-Mo and Ni-Cr-Mo high-strength low-alloy steels are candidate materials for the storage of high-pressure hydrogen gas. Forging materials of these steels have been used for such an environment, while there has been a strong demand for a higher performance material with high resistance to hydrogen embrittlement at lower cost. Thus, mechanical properties of Cr-Mo and Ni-Cr-Mo steels made of quenched and tempered seamless pipes in high-pressure hydrogen gas up to 105 MPa were examined in this study. The mechanical properties were deteriorated in the presence of hydrogen that appeared in reduction in local elongation, decrease in fracture toughness and accelerated fatigue-crack growth rate, although the presence of hydrogen did not affect yield and ultimate tensile strengths and made little difference to the fatigue endurance limit. It is proposed that pressure vessels for the storage of gaseous hydrogen made of these seamless line pipe steels can be designed.


CORROSION ◽  
1986 ◽  
Vol 42 (6) ◽  
pp. 337-345 ◽  
Author(s):  
K. Matsumoto ◽  
Y. Kobayashi ◽  
K. Ume ◽  
K. Murakami ◽  
K. Taira ◽  
...  

2015 ◽  
Vol 6 (3) ◽  
pp. 8
Author(s):  
Harold Tubex ◽  
Koen Van Minnebruggen ◽  
Wim De Waele

Given the expected increase in Arctic oil and gas exploitation, there is a demand for high-strength line pipe steels able to cope with the Arctic climate. The state-of-the-art of the tensile properties of API 5L steels at low temperatures is reviewed and discussed. Well-known characteristics such as an increase in strength and Young’s modulus with decreasing temperatures are confirmed. The Y/T ratio is fairly unaffected by changes in temperature. Lüders elongation manifests itself at low temperatures where the Lüders plateau tends to increase. Conflicting statements about the relation between ductility and temperature were found. Altogether, quantifiable test results are scarce, especially for the high strength grades from API 5L X90 grade onwards. The urgent need for more tensile strength and ductility data of these steels at low temperatures is stated and defended.


2011 ◽  
Vol 284-286 ◽  
pp. 1158-1164
Author(s):  
Xiaodong Shao

The use of high strength line pipe steels is beneficial for the reduction the cost of gas transmission pipelines by enabling high pressure transmission of large volumes of gas. The high strength line pipe steels will become the preferred materials for modern natural gas transmission pipeline. It was well known that manganese was an important element in the high strength line pipe steels. In this paper, a simple spectrophotometric method was described for determination of manganese in high strength line pipe steels. The method was based on the oxidation-reduction reaction between ammonium persulfate and manganese(II) producing manganese(VII) in the presence of silver nitrate as a catalyst. The characteristic wavelength of maximum absorption of manganese(VII) was obtained locating at 530 nm. Under the optimum reaction conditions the absorption value was proportional to the concentration of manganese in the range of 0.18%~2.0% (R2 = 0.9997), and the relative standard deviation was less than 3.0% (n=5). The proposed method was applied successfully to determine manganese in API grade X80 line pipe steel and API grade X70 line pipe steel samples.


Author(s):  
Takuya Hara ◽  
Yasuhiro Shinohara ◽  
Hitoshi Asahi ◽  
Yoshio Terada

The crack arrestability for high strength line pipe steels with tensile strength of 650 to 850 MPa was evaluated using precrack DWTT (pc-DWTT). Moreover, the effects of microstructure and texture on pc-DWTT energy were investigated. The pc-DWTT energy was remarkably affected by tensile strength. The pc-DWTT energy of ferrite and bainite/martensite dual phase steels was much higher than that of bainite single phase steels in comparison with the same tensile strength. The {100} plane is a cleavage plane in iron, so the brittle crack mainly propagates along the {100} plane. Bainte single phase steels indicated a high intensity of the {100} on the plane rotated 40° from the rolling plane with the axis of the rolling direction. On the other hand, ferrite and bainite/martensite dual phase steels indicated not only a high intensity of the {100} plane rotated 40° from the rolling plane, but also a high intensity of the {100} plane parallel to the rolling plane. Slant fracture could be easily formed by the high intensity of the {100} on the plane rotated 40° from the rolling plane if local brittle areas such as martensite and austenite constituent (M-A constituent), which became the initiation point of brittle fracture, existed. In contrast, separation tended to be formed by the high intensity of the {100} plane parallel to the rolling plane that was caused by the formation of ferrite and bainte/martensite dual phase microstructure. Thus, pc-DWTT energy and shear area were remarkably affected by microstructure and texture. Therefore, to control microstructure and texture is vay important for the improvement of pc-DWTT properties.


2017 ◽  
Vol 898 ◽  
pp. 719-724 ◽  
Author(s):  
Xiao Ben Liu ◽  
Qing Quan Duan ◽  
Bao Dong Wang ◽  
Hong Zhang

High strength line-pipe steels are widely used in long distance gas pipelines. Fracture toughness is one major parameter in the performance evaluation of these line-pipe steels. For high strength line-pipe steels, critical crack tip opening displacement (CTOD) is one typical quantity for fracture toughness. In this paper, a series of experimental studies were conducted to investigate the influences of steel property and specimen thickness on critical CTOD by three points bending tests for X70 and X80 line-pipe steel. Results showed that the critical CTOD is mainly depended on the plastic crack mouth opening displacement of the specimen. For the same size specimens, the critical CTOD of X80 steel was much less than X70 steel. The specimen thickness had a significant influence on the plastic crack mouth opening displacement. With the decrease of the specimen thickness, the critical CTOD increased.


Author(s):  
Takuya Hara ◽  
Yoshio Terada ◽  
Yasuhiro Shinohara ◽  
Hitoshi Asahi ◽  
Naoki Doi

The demand for natural gas using pipelines and LNG to supply the world gas markets is increasing substituting for oil and coal. The use of high strength line pipe steels provides the reduction of cost of gas transmission pipelines by enabling high-pressure transmission of large volumes of gas. In particular, high strength line pipe materials with a yield strength of X80 or higher have been developed over the last few decades around the world. Long distance gas transmission pipelines from remote areas sometimes pass through discontinuous permafrost, and are subject to ground movements by repeated thaw subsidence and frost heave. In this case, strain-based design has been applied as well as stress-based design. Therefore, high deformable line pipe is required for strain-based design in order to prevent the pipeline from fracturing. Nippon steel has also developed high deformable high strength line pipe material suitable for strain-based design. In recent years, demand for high strength line pipe steels has emerged in which the molybdenum content is reduced because of the high cost of molybdenum. Conventionally, high strength line pipe steel with Mo addition has been developed in order to control the microstructure and to obtain pipe properties such as strength and low temperature toughness. This paper describes the metallurgical design and development of high deformable high strength X100 line pipe with lower Mo content suitable for strain-based design. High deformable X100 line pipe with 16 mm wall thickness as well as good low temperature toughness and seam weld toughness has been developed.


Author(s):  
Ju¨rgen Bauer ◽  
Volker Schwinn ◽  
Karl-Hermann Tacke

From the viewpoint of a plate manufacturer the status of steel plate quality for line pipe applications is discussed. Technologies of the steel shop and the plate mill to create high class material are presented, as well as alloying and accelerated/intermediate cooling concepts. The levels of consistency that can be reached are illustrated on recent contracts. This includes sour gas resistant line pipe steels, applications for low temperatures and the extension of these features towards high strength grades.


Sign in / Sign up

Export Citation Format

Share Document