Decadal-scale sea ice changes in the Canadian Arctic and their impacts on humans during the past 4,000 years

2005 ◽  
Vol 10 (2) ◽  
pp. 113-126 ◽  
Author(s):  
Peta J. Mudie ◽  
Andre Rochon ◽  
Elisabeth Levac
2017 ◽  
Vol 13 (4) ◽  
pp. 411-420 ◽  
Author(s):  
François Lapointe ◽  
Pierre Francus ◽  
Scott F. Lamoureux ◽  
Mathias Vuille ◽  
Jean-Philippe Jenny ◽  
...  

Abstract. Understanding how internal climate variability influences arctic regions is required to better forecast future global climate variations. This paper investigates an annually-laminated (varved) record from the western Canadian Arctic and finds that the varves are negatively correlated with both the instrumental Pacific Decadal Oscillation (PDO) during the past century and also with reconstructed PDO over the past 700 years, suggesting drier Arctic conditions during high-PDO phases, and vice versa. These results are in agreement with known regional teleconnections, whereby the PDO is negatively and positively correlated with summer precipitation and mean sea level pressure respectively. This pattern is also evident during the positive phase of the North Pacific Index (NPI) in autumn. Reduced sea-ice cover during summer–autumn is observed in the region during PDO− (NPI+) and is associated with low-level southerly winds that originate from the northernmost Pacific across the Bering Strait and can reach as far as the western Canadian Arctic. These climate anomalies are associated with the PDO− (NPI+) phase and are key factors in enhancing evaporation and subsequent precipitation in this region of the Arctic. Collectively, the sedimentary evidence suggests that North Pacific climate variability has been a persistent regulator of the regional climate in the western Canadian Arctic. Since projected sea-ice loss will contribute to enhanced future warming in the Arctic, future negative phases of the PDO (or NPI+) will likely act to amplify this positive feedback.


2009 ◽  
Vol 22 (8) ◽  
pp. 2181-2198 ◽  
Author(s):  
Tessa Sou ◽  
Gregory Flato

Abstract Considering the recent losses observed in Arctic sea ice and the anticipated future warming due to anthropogenic greenhouse gas emissions, sea ice retreat in the Canadian Arctic Archipelago (CAA) is expected and indeed is already being observed. As most global climate models do not resolve the CAA region, a fine-resolution ice–ocean regional model is developed and used to make a projection of future changes in the CAA sea ice. Results from a historical run (1950–2004) are used to evaluate the model. The model does well in representing observed sea ice spatial and seasonal variability, but tends to underestimate summertime ice cover. The model results for the future (2041–60) show little change in wintertime ice concentrations from the past, but summertime ice concentrations decrease by 45%. The ice thickness is projected to decrease by 17% in the winter and by 36% in summer. Based on this study, a completely ice-free CAA is unlikely by the year 2050, but the simulated ice retreat suggests that the region could support some commercial shipping.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2139
Author(s):  
Paul H. Hutton ◽  
David M. Meko ◽  
Sujoy B. Roy

This work presents updated reconstructions of watershed runoff to San Francisco Estuary from tree-ring data to AD 903, coupled with models relating runoff to freshwater flow to the estuary and salinity intrusion. We characterize pre-development freshwater flow and salinity conditions in the estuary over the past millennium and compare this characterization with contemporary conditions to better understand the magnitude and seasonality of changes over this time. This work shows that the instrumented flow record spans the range of runoff patterns over the past millennium (averaged over 5, 10, 20 and 100 years), and thus serves as a reasonable basis for planning-level evaluations of historical hydrologic conditions in the estuary. Over annual timescales we show that, although median freshwater flow to the estuary has not changed significantly, it has been more variable over the past century compared to pre-development flow conditions. We further show that the contemporary period is generally associated with greater spring salinity intrusion and lesser summer–fall salinity intrusion relative to the pre-development period. Thus, salinity intrusion in summer and fall months was a common occurrence under pre-development conditions and has been moderated in the contemporary period due to the operations of upstream reservoirs, which were designed to hold winter and spring runoff for release in summer and fall. This work also confirms a dramatic decadal-scale hydrologic shift in the watershed from very wet to very dry conditions during the late 19th and early 20th centuries; while not unprecedented, these shifts have been seen only a few times in the past millennium. This shift resulted in an increase in salinity intrusion in the first three decades of the 20th century, as documented through early records. Population growth and extensive watershed modification during this period exacerbated this underlying hydrologic shift. Putting this shift in the context of other anthropogenic drivers is important in understanding the historical response of the estuary and in setting salinity targets for estuarine restoration. By characterizing the long-term behavior of San Francisco Estuary, this work supports decision-making in the State of California related to flow and salinity management for restoration of the estuarine ecosystem.


2013 ◽  
Vol 7 (8) ◽  
pp. 1461-1471 ◽  
Author(s):  
Kasia Piwosz ◽  
Józef Maria Wiktor ◽  
Andrea Niemi ◽  
Agnieszka Tatarek ◽  
Christine Michel

2020 ◽  
Author(s):  
Heike H. Zimmermann ◽  
Kathleen R. Stoof-Leichsenring ◽  
Stefan Kruse ◽  
Dirk Nürnberg ◽  
Ralf Tiedemann ◽  
...  
Keyword(s):  
Sea Ice ◽  

1985 ◽  
Vol 63 (10) ◽  
pp. 2389-2394 ◽  
Author(s):  
A. A. Mohammed ◽  
Vidar Neuhof

A new genus and species of Cyclopoida is described; Arctocyclopina pagonasta is found inhabiting the arctic sea ice. Comparison is made with Cyclopina gracilis Claus, with which it may be confused.


2020 ◽  
Vol 11 (S1) ◽  
pp. 233-250 ◽  
Author(s):  
Farahnaz Fazel-Rastgar

Abstract The observed unusually high temperatures in the Arctic during recent decades can be related to the Arctic sea ice declines in summer 2007, 2012 and 2016. Arctic dipole formation has been associated with all three heatwaves of 2007, 2012 and 2016 in the Canadian Arctic. Here, the differences in weather patterns are investigated and compared with normal climatological mean (1981–2010) structures. This study examines the high-resolution datasets from the North American Regional Reanalysis model. During the study periods, the north of Alaska has been affected by the low-pressure tongue. The maximum difference between Greenland high-pressure centre and Alaska low-pressure tongue for the summers of 2012, 2016 and 2007 are 8 hPa, 7 hPa and 6 hPa, respectively, corresponding and matching to the maximum summer surface Canadian Arctic temperature records. During anomalous summer heatwaves, low-level wind, temperatures, total clouds (%) and downward radiation flux at the surface are dramatically changed. This study shows the surface albedo has been reduced over most parts of the Canadian Arctic Ocean during the mentioned heatwaves (∼5–40%), with a higher change (specifically in the eastern Canadian Arctic region) during summer 2012 in comparison with summer 2016 and summer 2007, agreeing with the maximum surface temperature and sea ice decline records.


2017 ◽  
Author(s):  
J. Rachel Carr ◽  
Heather Bell ◽  
Rebecca Killick ◽  
Tom Holt

Abstract. Novaya Zemlya (NVZ) has experienced rapid ice loss and accelerated marine-terminating glacier retreat during the past two decades. However, it is unknown whether this retreat is exceptional longer-term and/or whether it has persisted since 2010. Investigating this is vital, as dynamic thinning may contribute substantially to ice loss from NVZ, but is not currently included in sea level rise predictions. Here, we use remotely sensed data to assess controls on NVZ glacier retreat between the 1973/6 and 2015. Glaciers that terminate into lakes or the ocean receded 3.5 times faster than those that terminate on land. Between 2000 and 2013, retreat rates were significantly higher on marine-terminating outlet glaciers than during the previous 27 years, and we observe widespread slow-down in retreat, and even advance, between 2013 and 2015. There were some common patterns in the timing of glacier retreat, but the magnitude varied between individual glaciers. Rapid retreat between 2000–2013 corresponds to a period of significantly warmer air temperatures and reduced sea ice concentrations, and to changes in the NAO and AMO. We need to assess the impact of this accelerated retreat on dynamic ice losses from NVZ, to accurately quantify its future sea level rise contribution.


Sign in / Sign up

Export Citation Format

Share Document