Chlorite interstratified with a 7 Å mineral: an example from offshore Norway and possible implications for the interpretation of the composition of diagenetic chlorites

Clay Minerals ◽  
1992 ◽  
Vol 27 (4) ◽  
pp. 475-486 ◽  
Author(s):  
S. Hillier ◽  
B. Velde

AbstractX-ray diffraction (XRD) patterns of a pore-lining diagenetic chlorite (14 Å) from a reservoir sandstone, offshore Norway, show broad odd-order and sharp even-order basal reflections indicating that it contains 7 Å layers. Using NEWMOD, simulated XRD patterns with 15% 7 Å serpentine layers and a maximum crystallite thickness of 30 layers match the natural mineral well. Microprobe analyses of the 7 Å-14 Å mineral indicate that it is Fe-rich and aluminous suggesting that it is interstratified berthierine-chamosite. Apparent octahedral vacancies, however, suggest a significant dioctahedral component, and an alternative interpretation is interstratified kaolinite-chlorite. Indeed, chemical analyses of the mineral suggest a mixture of chlorite with 15% kaolinite, precisely the proportion of 7 Å layers indicated by XRD. Two other examples from the literature, previously identified as diagenetic chlorite, are probably also 7 Å-14 Å interstratified minerals, and the proportion of 7 Å layers indicated by XRD is also correlated with their structural formulae, if the 7 Å layers are, in fact, kaolinitic. This type of interstratification could explain why Fe-rich diagenetic chlorites appear to be compositionally distinct from metamorphic chlorites. The structure and chemistry of the Norwegian chlorite tend to support the idea that pore-lining chlorites form early in the diagenetic history, inhibiting the precipitation of later diagenetic minerals, and hence preserving abnormally high porosity at greater depths.

2015 ◽  
Vol 7 (1) ◽  
pp. 1346-1351
Author(s):  
Ch.Gopal Reddy ◽  
Ch. Venkateshwarlu ◽  
P. Vijaya Bhasker Reddy

Co-Zr substituted M-type hexagonal barium ferrites, with chemical formula BaCoxZrxFe12-2xO19 (where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), have been synthesized by double sintering ceramic method. The crystallographic properties, grain morphology and magnetic properties of these ferrites have been investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The XRD patterns confirm the single phase with hexagonal structure of prepared ferrites. The magnetic properties have been investigated as a function of Co and Zr ion composition at an applied field in the range of 20 KOe. These studies indicate that the saturation magnetization (Ms) in the samples increases initially up to the Co-Zr composition of x=0.6 and decreases thereafter. On the other hand, the coercivity (Hc) and Remanent magnetization (Mr) are found to decrease continuously with increasing Co-Zr content. This property is most useful in permanent magnetic recording. The observed results are explained on the basis of site occupation of Co and Zr ions in the samples.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Mihaela Flondor ◽  
Ioan Rosca ◽  
Doina Sibiescu ◽  
Mihaela-Aurelia Vizitiu ◽  
Daniel-Mircea Sutiman ◽  
...  

In this paper the synthesis and the study of some complex compounds of Fe(III) with ligands derived from: 2-(4-chloro-phenylsulfanyl)-1-(2-hydroxy-3,5-diiodo-phenyl)-ethanone (HL1), 1-(3,5-dibromo-2-hydroxy-phenyl)-2-phenylsulfanyl-ethanone(HL2), and 2-(4-chloro-phenylsulfanyl)-1-(3,5-dibromo-2-hydroxy-phenyl)-ethanone (HL3) is presented. The characterization of these complexes is based on method as: the elemental chemical analysis, IR and ESR spectroscopy, M�ssbauer, the thermogravimetric analysis and X-ray diffraction. Study of the IR and chemical analysis has evidenced that the precipitates form are a complexes and the combination ratio of M:L is 1:2. The central atoms of Fe(III) presented paramagnetic properties and a octaedric hybridization. Starting from this precipitation reactions, a method for the gravimetric determination of Fe(III) with this organic ligands has been possible. Based on the experimental data on literature indications, the structural formulae of the complex compounds are assigned.


Author(s):  
Clément Luneau ◽  
Jean Barbier ◽  
Nicolas Macris

Abstract We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new non-trivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050003
Author(s):  
M. R. Hassan ◽  
M. T. Islam ◽  
M. N. I. Khan

In this research, influence of adding Li2CO3 (at 0%, 2%, 4%, 6%) on electrical and magnetic properties of [Formula: see text][Formula: see text]Fe2O4 (with 60% Ni and 40% Mg) ferrite has been studied. The samples are prepared by solid state reaction method and sintered at 1300∘C for 6[Formula: see text]h. X-ray diffraction (XRD) patterns show the samples belong to single-phase cubic structure without any impurity phase. The magnetic properties (saturation magnetization and coercivity) of the samples have been investigated by VSM and found that the higher concentration of Li2CO3 reduces the hysteresis loss. DC resistivity increases with Li2CO3 contents whereas it decreases initially and then becomes constant at lower value with temperature which indicates that the studied samples are semiconductor. The dielectric dispersion occurs at a low-frequency regime and the loss peaks are formed in a higher frequency regime, which are due to the presence of resonance between applied frequency and hopping frequency of charge carriers. Notably, the loss peaks are shifted to the lower frequency with Li2CO3 additions.


Author(s):  
Peng Liu ◽  
Hongbin Zhang ◽  
Sinong Wang ◽  
Hui Yu ◽  
Bingjie Lu ◽  
...  

AbstractThe crystallinity indices (CrI) of Chinese handmade papers were investigated using the X-ray diffraction (XRD) method. Four Chinese handmade papers, Yingchun, Zhuma, Yuanshu and Longxucao papers were used as model substrates of mulberry bark, ramie, bamboo and Eulaliopsis binata papers, respectively. Two forms of the paper samples, paper sheets and their comminuted powders, were used in this study. The results showed that their XRD patterns belong to the cellulose-I type and Iβ dominates the cellulose microstructure of these paper samples. Moreover, it was found that the microstructures and CrIs of cellulose of these papers were changed by the grinding treatment. This work suggested that the sheet form of the handmade papers is suitable to determine CrI by XRD, despite the contribution of non-cellulosic components in the papers. The order of CrIs for these paper sheet samples was Yingchun, Zhuma, Longxucao and Yuanshu papers. Besides CrIs, differences in cross-sectional areas of the crystalline zone of cellulose can be used for comparing different types of handmade papers. It was also found that the CrIs and crystallite size of paper cellulose varied between the sheet samples and the powder samples, illustrating that the pulverisation has a negative influence on the microstructure of the handmade papers.


2011 ◽  
Vol 197-198 ◽  
pp. 417-420 ◽  
Author(s):  
Shu Cai Zhou ◽  
Chen Guang Bai ◽  
Chun Lin Fu

In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnxsolid solutions, Mg2Sil-xSnxsolid solutions have been prepared by Microwave-assisted Synthesis techniques. The heating behavior of Mg, Si and Sn fixed powder was investigated under microwave irradiation. X-ray diffraction (XRD) was used to characterize the powders. The results suggest that the temperature-rising rate is also dependent on the initial green density and higher green density provides lower heating rate while power setting are fixed. XRD patterns show that Mg2Sil-xSnxsolid solutions have been well formed under microwave irradiation.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2015 ◽  
Vol 659 ◽  
pp. 185-189
Author(s):  
Aparporn Sakulkalavek ◽  
Rungnapa Thonglamul ◽  
Rachsak Sakdanuphab

In this study, we investigated a CuAl0.9Fe0.1O2 compound prepared at two different sintering temperatures in order to find out the effect of sintering temperature on the compound's figure of merit of thermoelectric properties. The thermoelectric CuAl0.9Fe0.1O2 compound was prepared from high purity grade Cu2O, Al2O3 and Fe2O3 powders. The mixture of these powders were ground and then pressed with uniaxial pressure into pellets. The pellets obtained were sintered in the air at 1423 K and 1473 K. X-ray diffraction (XRD) patterns showed a single phase of CuAl0.9Fe0.1O2 with rhombohedral structure, , along with a trace of CuO second phase. Moreover, the XRD peaks of the sample sintered at 1423 K indicated that more Fe3+ atoms replaced Al3+ atoms in this sample than they did in the sample sintered at 1473 K. The average grain size of the CuAl0.9Fe0.1O2 compound prepared increased with increasing sintering temperature, whereas its mean pore size and porosity decreased with increasing sintering temperature. The dispersed small pores markedly decreased the thermal conductivity of the compound, while the Fe3+ substitution of Al3+ increased its electrical conductivity. The highest figure of merit (ZT) found was 0.021 at 973 K in the CuAl0.9Fe0.1O2 sample sintered at 1423 K. Our findings show that this low-cost material with a reasonable figure of merit is a good candidate for thermoelectric applications at high-temperature.


2014 ◽  
Vol 1061-1062 ◽  
pp. 83-86
Author(s):  
Hong Wu ◽  
De Yi Zheng

In this paper, the effects of different sintering temperature on the microstructure and piezoelectric properties of Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3(PNZZT) ceramic samples were investigated. The Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 ceramics materials was prepared by a conventional mixed oxide method. In the period of the experiment, the relationship between crystallographic phase and microstructure were analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM) respectively. The XRD patterns shows that all of the ceramic samples are with a tetragonal perovskite structure. Along with sintering temperature increased and the x is 0.03, the grain size gradually become big. Through this experiment, it has been found that when the x is 0.03 and sintered at 1130°C for 2 h, the grains grow well, the grain-boundary intersection of the sample combined well and the porosity of the ceramics decreased, an excellent comprehensive electrical properties of the Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 samples can be obtained. Its best electrical properties are as follows: dielectric constant (ε) is 1105, dielectric loss(tg) is 0.017, electromechanical coupling coefficient (Kp) is 0.287, piezoelectric constant(d33) is 150PC/N


2017 ◽  
Vol 727 ◽  
pp. 327-334
Author(s):  
Yan Wang ◽  
Jun Wang ◽  
Xiao Fei Zhang ◽  
Ya Qing Liu

La-Nd co-doped barium hexaferrites, Ba0.7(LamNdn)0.3Fe12O19 (D-BaM), were successfully prepared by sol-gel method. PANI / D-BaM composites were synthesized by in-situ polymerization in solution. The structure, morphology and properties of samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), four-probe conductivity tester and vector network analyzer. The XRD patterns showed that the crystal structure of all the samples exist as M-type phases. The SEM images revealed that the particles presented a hexagonal platelet-like morphology. The magnetic properties could be improved by substitutions of La and Nd ions. The saturation magnetization (Ms) and coercive force (Hc) increased with the change of La / Nd ratio to the maximum at La / Nd = 3:1. The doped particles have also been embedded in conductive PANI to prepare electromagnetic materials, and the conductivity kept on the order of 10-2. The microwave absorbing properties of composites at 30 MHz-6 GHz improved obviously, the peak value of reflection loss could reach-7.5 dB.


Sign in / Sign up

Export Citation Format

Share Document