Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks

2009 ◽  
Vol 73 (5) ◽  
pp. 777-796 ◽  
Author(s):  
R. Macdonald ◽  
H. E. Belkin ◽  
F. Wall ◽  
B. Baginski

AbstractElectron microprobe analyses are presented of chevkinite-group minerals from Canada, USA, Guatemala, Norway, Scotland, Italy and India. The host rocks are metacarbonates, alkaline and subalkaline granitoids, quartz-bearing pegmatites, carbonatite and an inferred K-rich tuff. The analyses extend slightly the range of compositions in the chevkinite group, e.g. the most MgO-rich phases yet recorded, and we report two further examples where La is the dominant cation in the A site. Patchily- zoned crystals from Virginia and Guatemala contain both perrierite and chevkinite compositions. The new and published analyses are used to review compositional variation in minerals of the perrierite subgroup, which can form in a wide range of host rock compositions and over a substantial pressure- temperature range. The dominant substitutions in the various cation sites and a generalized substitution scheme are described.

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 135 ◽  
Author(s):  
Irene Cantarero ◽  
David Parcerisa ◽  
Maria Alexandra Plata ◽  
David Gómez-Gras ◽  
Enrique Gomez-Rivas ◽  
...  

Near-surface diagenesis has been studied in the Langhian siliciclastic rocks of the Montjuïc Hill (Barcelona Plain) by means of petrographical (optical and cathodoluminescence) and geochemical (electron microprobe, δ18O, δ13C, δ34S and 87Sr/86Sr) analyses. In the hill, these rocks are affected by strong silicification, but the same unit remains non-silicified at depth. The results reveal that fracturing took place after lithification and during uplift. Fracture cementation is clearly controlled by the previous diagenesis of the host rock. In non-silicified areas, cementation is dominated by calcite, which precipitated from meteoric waters. In silicified areas, fractures show multiepisodic cementation produced firstly by barite and secondly by silica, following the sequence opal, lussatite, chalcedony, and quartz. Barite precipitated only in fractures from the mixing of upflowing seawater and percolating meteoric fluids. The presence of silica stalactites, illuviation, and geopetal structures, and δ18O values indicate that silica precipitation occurred in the vadose regime from low-temperature percolating meteoric fluids, probably during a glacial period. Moreover, the presence of alunite suggests that silica cement formed under acidic conditions. Karst features (vugs and caverns), formed by arenisation, reveal that silica was derived from the dissolution of surrounding silicified host rocks.


1986 ◽  
Vol 23 (10) ◽  
pp. 1470-1479 ◽  
Author(s):  
A. Changkakoti ◽  
R. D. Morton

The Great Bear Lake silver deposits in the Northwest Territories of Canada occur within two separate domains, namely the Echo Bay sector and the Camsell River sector. In these deposits, native silver occurs in veins, associated with a wide range of Ni-, Co-, and Fe-arsenides, sulphides, and pitchblende in gangues of quartz, calcite, dolomite, rhodochrosite, and fluorite. The host rocks of the veins are for the most part Aphebian volcano-sedimentary roof pendants within the Great Bear batholithic complex. Native silver, nickeline (niccolite), maucherite, safflorite, rammelsbergite, pararammelsbergite, loellingite, skutterudite, cobaltite, gersdorffite, and arsenopyrite were analyzed on the electron microprobe to determine any local or regional chemical variations. Mercury and antimony were found to occur in significant quantities in the majority of the native-silver samples. The silver samples from the Camsell River sector were found to be generally more enriched in mercury than those of the Echo Bay sector. Nickeline, cobaltite, and gersdorffite were found to be enriched in arsenic in the ores of the Camsell River sector, versus those of the Echo Bay sector. Such variations are probably related to differing magmatic sources for the hydrothermal fluids or even to precursor metallo-organic associations and are not due to different rocks hosting the silver-bearing veins.


2013 ◽  
Vol 734-737 ◽  
pp. 219-223
Author(s):  
De Zhi Huang ◽  
Yu Han Liu ◽  
Zhen Liu ◽  
Long Wang ◽  
Huang Ling Gu

Western Tianshan High-pressure (HP)-metamorphic belt is characterized by developed High-pressure (HP) veins, which are composed by HP-metamorphic minerals. The host rocks of the HP-veins are mainly composed by eclogites and blueschists. As the direct record of the deep fluids in the paleo-subduction zones, the HP-veins can provide us deep samples for probing into the deep fluids in the subduction zones. Fluids in the deep subduction zones play an important role in crust-mantle exchange related to plate subduction process. The electron microprobe analyses of HP-metamorphic minerals omphacite inside the veins and host rocks in western Tianshan high-pressure metamorphic belt is mostly paid attention. The result shows that the composition of the omphacite from HP-veins have the same composition of the omphacite from the host rocks, which indicates that the fluids from which the HP-vein precipitated originated from the host rock.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 195 ◽  
Author(s):  
Wenheng Liu ◽  
Xiaodong Liu ◽  
Jiayong Pan ◽  
Kaixing Wang ◽  
Gang Wang ◽  
...  

The Qingshanbao complex, part of the uranium metallogenic belt of the Longshou-Qilian mountains, is located in the center of the Longshou Mountain next to the Jiling complex that hosts a number of U deposits. However, little research has been conducted in this area. In order to investigate the origin and formation of mafic enclaves observed in the Qingshanbao body and the implications for magmatic-tectonic dynamics, we systematically studied the mineralogy, petrography, and geochemistry of these enclaves. Our results showed that the enclaves contain plagioclase enwrapped by early dark minerals. These enclaves also showed round quartz crystals and acicular apatite in association with the plagioclase. Electron probe analyses showed that the plagioclase in the host rocks (such as K-feldspar granite, adamellite, granodiorite, etc.) show normal zoning, while the plagioclase in the mafic enclaves has a discontinuous rim composition and shows instances of reverse zoning. Major elemental geochemistry revealed that the mafic enclaves belong to the calc-alkaline rocks that are rich in titanium, iron, aluminum, and depleted in silica, while the host rocks are calc-alkaline to alkaline rocks with enrichment in silica. On Harker diagrams, SiO2 contents are negatively correlated with all major oxides but K2O. Both the mafic enclaves and host rock are rich in large ion lithophile elements such as Rb and K, as well as elements such as La, Nd, and Sm, and relatively poor in high field strength elements such as Nb, Ta, P, Ti, and U. Element ratios of Nb/La, Rb/Sr, and Nb/Ta indicate that the mafic enclaves were formed by the mixing of mafic and felsic magma. In terms of rare earth elements, both the mafic enclaves and the host rock show right-inclined trends with similar weak to medium degrees of negative Eu anomaly and with no obvious Ce anomaly. Zircon LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry) U-Pb concordant ages of the mafic enclaves and host rock were determined to be 431.8 5.2 Ma (MSWD (mean standard weighted deviation)= 1.5, n = 14) and 432.8 4.2 Ma (MSWD = 1.7, n = 16), respectively, consistent with that for the zircon U-Pb ages of the granite and medium-coarse grained K-feldspar granites of the Qingshanbao complex. The estimated ages coincide with the timing of the late Caledonian collision of the Alashan Block. This comprehensive analysis allowed us to conclude that the mafic enclaves in the Qingshanbao complex were formed by the mixing of crust-mantle magma with mantle-derived magma due to underplating, which caused partial melting of the ancient basement crust during the collisional orogenesis between the Alashan Block and Qilian rock mass in the early Silurian Period.


Author(s):  
Akila C. Thenuwara ◽  
Pralav P. Shetty ◽  
Neha Kondekar ◽  
Chuanlong Wang ◽  
Weiyang Li ◽  
...  

A new dual-salt liquid electrolyte is developed that enables the reversible operation of high-energy sodium-metal-based batteries over a wide range of temperatures down to −50 °C.


1979 ◽  
Vol 78 (1) ◽  
pp. 281-293
Author(s):  
MIKKO HARRI ◽  
ERNST FLOREY

1. Crayfish, Astacus leptodactylus, were acclimated to 12 °C and to 25 °C. Nerve muscle preparations (closer muscle of walking legs) were subjected to temperatures ranging from 6 to 32 °C. 2. The resting membrane potential of muscle fibres was found to increase with temperature in a linear manner, but with a change in slope at around 170 in cold-acclimated preparations, and around 24 °C in warm-acclimated ones. 3. Temperature acclimation shifted the temperature range of maximal amplitudes of fast and slow e.j.p.s toward the acclimation temperature. Optimal facilitation of slow e.j.p.s also occurred near the respective acclimation temperature. 4. E.j.p. decay time is nearly independent of temperature in the upper temperature range but increases steeply when the temperature falls below a critical range around 17 °C in preparations from cold-acclimated animals, and around 22 °C after acclimation to 25 °C. 5. Peak depolarizations reached by summating facilitated e.j.p.s are conspicuously independent of temperature over a wide range (slow and fast e.j.p.s of cold-acclimated preparations, fast e.j.p.s of warm-acclimated ones) which extends to higher temperatures after warm acclimation in the case of fast e.j.p.s. In warm-acclimated preparations the peak depolarization of slow e.j.p.s first falls then rises and falls again as the temperature increases from 8 to 32 °C. 6. Tension development elicited by stimulation of the slow axon at a given frequency reaches maximal values at the lower end of the temperature range in cold-acclimated preparations. The maximum is shifted towards 20 °C after warm acclimation. Fast contractions decline with temperature; possible acclimation effects are masked by the great lability of fast contractions in warm-acclimated preparations. 7. It is suggested that changes in the composition of membrane lipids may be responsible for the effects of acclimation on the electrical parameters and their characteristic temperature dependence.


1998 ◽  
Vol 62 (2) ◽  
pp. 165-178 ◽  
Author(s):  
C. M. B. Henderson ◽  
A. M. T. Bell ◽  
S. C. Kohn ◽  
C. S. Page

AbstractThe structure of a synthetic end-member wairakite (CaAl2Si4O12·2H2O) has been determined using Rietveld analysis of high-resolution, synchrotron X-ray powder diffraction data, and 29Si and 27Al magic angle spinning nuclear magnetic resonance spectroscopy. The framework in the synthetic sample is more disordered than that in natural wairakite. Ca is distributed over the cavity cation sites M2, M12A, M12B in the approximate proportions 0.8:0.1:0.1, respectively, with M11 being vacant. 29Si MAS NMR data are consistent with about 80% of the Si occupying tetrahedral T11 and T12 sites linked to two Al atoms [Q4(2Al) silicons]. Tetrahedral and cavity cation site disorder are coupled so that Al mainly occupies T2 sites, with Ca in M12A and M12B being balanced by Al in T12A and T12B; T11A and T11B sites appear to only contain Si, in agreement with the M11 site being vacant. The crystal chemistries of the wide range of stoichiometries which crystallize with the leucite/pollucite structure-type are also reviewed, with particular attention being paid to the tetrahedral ordering configurations present in these phases, and the implications to crystallographic phase transitions.


2018 ◽  
Vol 6 (41) ◽  
pp. 11178-11183 ◽  
Author(s):  
Yan Gao ◽  
Yao Cheng ◽  
Tao Hu ◽  
Zeliang Ji ◽  
Hang Lin ◽  
...  

This study highlights a highly sensitive dual-mode optical thermometer Pr3+:Gd2ZnTiO6 for thermal readings over a wide range of temperature.


2018 ◽  
Vol 55 (2) ◽  
pp. 130-137
Author(s):  
David E. Newton ◽  
Amy G. Ryan ◽  
Luke J. Hilchie

We use analogue experimentation to test the hypothesis that host rock competence primarily determines the morphology of kimberlite pipes. Natural occurrences of kimberlite pipes are subdivided into three classes: class 1 pipes are steep-sided diatremes emplaced into crystalline rock; class 2 pipes have a wide, shallow crater emplaced into sedimentary rock overlain by unconsolidated sediments; class 3 pipes comprise a steep-sided diatreme with a shallow-angled crater emplaced into competent crystalline rock overlain by unconsolidated sediments. We use different configurations of three analogue materials with varying cohesions to model the contrasting geological settings observed in nature. Pulses of compressed air, representing the energy of the gas-rich head of a kimberlitic magma, are used to disrupt the experimental substrate. In our experiments, the competence and configuration of the analogue materials control the excavation processes as well as the final shape of the analogue pipes: eruption through competent analogue strata results in steep-sided analogue pipes; eruption through weak analogue strata results in wide, shallow analogue pipes; eruption through intermediate strength analogue strata results in analogue pipes with a shallow crater and a steep-sided diatreme. These experimental results correspond with the shapes of natural kimberlite pipes, and demonstrate that variations in the lithology of the host rock are sufficient to generate classic kimberlite pipe shapes. These findings are consistent with models that ascribe the pipe morphologies of natural kimberlites to the competence of the host rocks in which they are emplaced.


2014 ◽  
Vol 62 ◽  
pp. 1-15
Author(s):  
Jørn G. Rønsbo ◽  
Henning Sørensen ◽  
Encarnacion Roda-Robles ◽  
François Fontan ◽  
Pierre Monchoux

In the Ilímaussaq alkaline complex, minerals from the rinkite–nacareniobsite-(Ce) solid solution series have been found in pulaskite pegmatite, sodalite foyaite, naujaite and naujaite pegmatite from the roof sequence, and in marginal pegmatite, kakortokite and lujavrite from the floor sequence. The electron microprobe analyses embrace almost the full extension of the solid solution series and confirm its continuity. The solid solution series shows similar compositional variations in the roof and floor sequences: Rinkite members of the series are found in the less evolved rocks in the two sequences, whereas nacareniobsite-Ce members occur in the most evolved rocks and pegmatites in the two sequences. The REE (+Y) content varies from 0.83 atoms per formula unit (apfu) in rinkite from pulaskite pegmatite to 1.31 apfu in nacareniobsite-(Ce) from naujaite pegmatite. The main substitution mechanisms in the solid solution series investigated in this work are 2Ca2+ = Na+ + REE3+ and Ti4+ + Ca2+ = Nb5+ + Na+. The increased contents of Nb5+ and REE3+ are only to a minor degree compensated through the F1– = O2– substitution. The chondrite normalised REE patterns of the minerals develop in a similar way in the two sequences, showing relative La-enrichment and Y-depletion from the less to the most evolved rocks. Hainite has not previously been found in the Ilímaussaq complex. It was here identified in a pulaskite pegmatite sample by a combination of X-ray diffraction giving the unit cell dimensions a = 9.5923(7) Å, b = 7.3505(5) Å, c = 5.7023(4) Å, α = 89.958(2)°, β = 100.260(1)°, γ = 101.100(2)°, and X-ray powder pattern and electron microprobe data giving the empirical formula (Ca1.62 Zr0.16Y 0.22) (Na0.87Ca1.11) (Ca 1.65 REE0.35)Na(Ti0.81Nb0.09Fe0.08 Zr0.02)(Si2O7)2O0.99F2.96. Based on published and the present data it is documented that minerals from the hainite-götzenite solid solution series show a compositional variation between the ideal end members (Y,REE,Zr)Na2Ca4Ti(Si2O7)2OF3 and NaCa6Ti(Si2O7)2OF3.


Sign in / Sign up

Export Citation Format

Share Document