Distal elements are critical for human CD34 expression in vivo

Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4420-4426 ◽  
Author(s):  
Yutaka Okuno ◽  
Claudia S. Huettner ◽  
Hanna S. Radomska ◽  
Victoria Petkova ◽  
Hiromi Iwasaki ◽  
...  

The elements regulating gene expression in hematopoietic stem cells are still poorly understood. We previously reported that a 141-kilobase (kb) human CD34 transgene confers properly regulated human CD34 expression in transgenic mice. A construct with only the human CD34 promoter and 3′ enhancer region is not sufficient, suggesting that critical distal elements are necessary for expression of the human CD34 gene. To further localize such elements, we analyzed deletion constructs of the human CD34 gene and evaluated their function in transgenic mice. Constructs harboring as little as 18 kb of 5′ and 26 kb of 3′ human CD34 flanking sequence conferred human expression in tissues of transgenic mice with a pattern similar to that of the 141-kb human transgene. In contrast, a construct harboring 10 kb of 5′ and 17 kb of 3′ human CD34 flanking sequence gave no expression. These data demonstrate that regions between 10 to 18 kb upstream and/or 17 to 26 kb downstream of the human CD34 gene contain critical elements for human CD34 expression in vivo. Further functional analysis of these regions in transgenic mice will be crucial for understanding CD34 gene expression in hematopoietic stem and progenitor cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 125-125
Author(s):  
Elena Levantini ◽  
Yutaka Okuno ◽  
Pu Zhang ◽  
Steffen Koschmieder ◽  
Hanna S. Radomska ◽  
...  

Abstract CD34 is the best-defined human hematopoietic stem cell (HSC) marker, however the regulation of its gene expression is still largely unknown. Therefore, unraveling the elements that regulate human CD34 expression would be an invaluable tool for a broad range of studies, including the establishment of models of leukemia in mice, which require targeting of the transgene to stem and/or early progenitor cells. Moreover, identification of such regulatory elements will provide important insights into the transcriptional agenda of stem and progenitor cells and most importantly will prove useful for gene therapy protocols. Studies from our laboratory demonstrated that human CD34 transgenes are expressed in murine repopulating HSCs, which resembles the expression of the CD34 gene in human hematopoiesis, thus indicating the mouse model as an excellent way to study the expression of human CD34. Using P1 derived artificial chromosome (PAC) clones encompassing the human CD34 gene to generate transgenic mice, we showed that 90kb of upstream and 26kb of downstream flanking sequences were capable of regulating human CD34 expression in murine transgenic lines. Successive deletions of this larger construct were then performed to identify the important control regions. Deletion of the 5′ region from −90kb to −18kb did not result in any loss of activity. PAC54A19, a clone extending from −18kb to +26kb, expressed RNA in various tissues in a manner similar to that of larger fragments. In contrast, deletions creating a construct spanning from −10kb to +17kb led to complete loss of expression in transgenic animals, indicating that critical distal elements are located between −18kb to −10kb and/or +17kb to +26kb. In order to facilitate identification of important regulatory elements present in the upstream (−18kb to −10 kb) and/or downstream (+17kb to +26kb) regions of human CD34, we created further deletions of PAC54A19 using rare-cutting restriction enzymes, and studied the effects of the deletions on human CD34 expression in transgenic mice. Interestingly, we did not detect any human CD34 mRNA and protein expression in bone marrow and HSCs from transgenic mice carrying a construct spanning from −18kb to +17.4kb. In contrast, we observed expression of human CD34 transcripts in the bone marrow of transgenic mice containing a PAC spanning from −12.8kb to +26kb. Furthermore, HSCs from this latter group of mice presented the human CD34 antigen on their surface, as detected by FACS. Taken together, these data are highly suggestive that critical cis regulatory element(s) required to drive human CD34 in vivo expression are located in a 8.6kb fragment placed between +17.4kb and +26kb downstream of the human CD34 gene. Our current efforts focus on identifying the element(s) within the 8.6kb 3′ region that might be required to achieve human CD34 expression in HSCs.


2017 ◽  
Vol 216 (7) ◽  
pp. 2217-2230 ◽  
Author(s):  
Gregoire Stik ◽  
Simon Crequit ◽  
Laurence Petit ◽  
Jennifer Durant ◽  
Pierre Charbord ◽  
...  

Extracellular vesicles (EVs) have been recently reported as crucial mediators in cell-to-cell communication in development and disease. In this study, we investigate whether mesenchymal stromal cells that constitute a supportive microenvironment for hematopoietic stem and progenitor cells (HSPCs) released EVs that could affect the gene expression and function of HSPCs. By taking advantage of two fetal liver–derived stromal lines with widely differing abilities to maintain HSPCs ex vivo, we demonstrate that stromal EVs play a critical role in the regulation of HSPCs. Both supportive and nonsupportive stromal lines secreted EVs, but only those delivered by the supportive line were taken up by HSPCs ex vivo and in vivo. These EVs harbored a specific molecular signature, modulated the gene expression in HSPCs after uptake, and maintained the survival and clonogenic potential of HSPCs, presumably by preventing apoptosis. In conclusion, our study reveals that EVs are an important component of the HSPC niche, which may have major applications in regenerative medicine.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2370-2370
Author(s):  
Daniel Ewerth ◽  
Stefanie Kreutmair ◽  
Birgit Kügelgen ◽  
Dagmar Wider ◽  
Julia Felthaus ◽  
...  

Abstract Introduction: Hematopoietic stem and progenitor cells (HSPCs) represent the lifelong source of all blood cells and continuously renew the hematopoietic system by differentiation into mature blood cells. The process of differentiation is predominantly initiated in G1 phase of the cell cycle when stem cells leave their quiescent state. During G1 the anaphase-promoting complex or cyclosome (APC/C) associated with the coactivator Cdh1 is highly active and marks proteins for proteasomal degradation to regulate proliferation. In addition, Cdh1 has been shown to control terminal differentiation in neurons, muscle cells or osteoblasts. Here we show that Cdh1 is also a critical regulator of human HSPC differentiation and self-renewal. Methods: Human CD34+ cells were collected from peripheral blood (PB) of G-CSF mobilized donors and cultured in the presence of different cytokine combinations. To analyze cell division and self-renewal versus differentiation, CFSE staining was used in combination with flow cytometric detection of CD34 expression. The knockdown and overexpression of Cdh1 was achieved by lentiviral delivery of suitable vectors into target cells. After cell sorting transduced (GFP+) CD34+ cells were used for in vitro differentiation in liquid culture or CFU assay. For in vivo experiments purified cells were transplanted into NSG mice. Results: G-CSF mobilized CD34+ cells showed effective differentiation into granulocytes (SCF, G-CSF), erythrocytes (SCF, EPO) or extended self-renewal (SCF, TPO, Flt3-L) when stimulated in vitro. The differentiation was characterized by a fast downregulation of Cdh1 on protein level, while Cdh1 remained expressed under self-renewal conditions. A detailed analysis of different subsets, both in vitro and in vivo, showed high Cdh1 level in CD34+ cells and low expression in myeloid cells. Analysis of proliferation revealed lowest division rates during self-renewal, accompanied by higher frequency of CD34+ cells. The fastest proliferation was found after induction of erythropoiesis. These experiments also showed a more rapid decrease of HSPCs' colony-forming ability and of CD34+ cells during granulopoiesis after 2-3 cell divisions in contrast to a moderate decline under self-renewal conditions. The depletion of Cdh1 (Cdh1-kd) had no effect on total cell numbers or proliferation detected by CFSE during differentiation and self-renewal, but showed an increase in S phase cells. These results were confirmed at the single cell level by measuring the cell cycle length of individual cells. Independent of cell cycle regulation, Cdh1-kd cells showed a significant maintenance of CD34+ cells under self-renewal conditions and during erythropoiesis with lower frequency of Glycophorin A+ cells. In CFU assays, the Cdh1-kd resulted in less primary colony formation, notably CFU-GM and BFU-E, but significantly more secondary colonies compared to control cells. These results suggest that the majority of cells reside in a more undifferentiated state due to Cdh1-kd. The overexpression of Cdh1 showed reversed results with less S phase cells and tendency to increased differentiation in liquid culture and CFU assays. To further validate our results in vivo, we have established a NSG xenotransplant mouse model. Human CD34+ cells depleted of Cdh1 engrafted to a much higher degree in the murine BM 8 and 12 weeks after injection as shown by higher frequencies of human CD45+ cells. Moreover, we also found an increased frequency of human CD19+ B cells after transplantation of CD34+ Cdh1-kd cells. These results suggest an enhanced in vivo repopulation capacity of human CD34+ HSCs in NSG mice when Cdh1 is depleted. Preliminary data in murine hematopoiesis support our hypothesis showing enhanced PB chimerism upon Cdh1-kd. Looking for a mediator of these effects, we found the Cdh1 target protein TRRAP, a cofactor of many HAT complexes, increased upon Cdh1-kd under self-renewal conditions. We use currently RT-qPCR to determine, if this is caused by a transcriptional or post-translational mechanism. Conclusions: Loss of the APC/C coactivator Cdh1 supports self-renewal of CD34+ cells, represses erythropoiesis in vitro and facilitates engraftment capacity and B cell development of human HSPCs in vivo. This work was supported by Josè Carreras Leukemia Foundation grant DCJLS R10/14 (to ME+RW) Disclosures Ewerth: Josè Carreras Leukemia Foundation: Research Funding. Wäsch:German Cancer Aid: Research Funding; Comprehensiv Cancer Center Freiburg: Research Funding; Janssen-Cilag: Research Funding; MSD: Research Funding.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Guruchandar Arulmozhivarman ◽  
Martin Kräter ◽  
Manja Wobus ◽  
Jens Friedrichs ◽  
Elham Pishali Bejestani ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3554-3554
Author(s):  
Yutaka Okuno ◽  
Elena Levantini ◽  
Hiro Tatetsu ◽  
Hiroaki Mitsuya ◽  
Daniel G. Tenen

Abstract In order to understand the controls of gene expression in hematopoietic stem cells (HSC), we have studied the regulation of human CD34, a cell surface glycoprotein used in isolation of HSC. We previously reported that regions 10 to 18 kb 5′ upstream of the transcription start site (TSS) and/or 17 to 26 kb 3′ downstream of the transcription termination site (TTS) of the human CD34 gene contain critical elements for expression in vivo. Mice transgenic for a human CD34 PAC clone (PAC54A19) that includes 18 kb of 5′ and 26 kb of 3′ human CD34 flanking sequences expressed human CD34 antigen in the majority of HSC. Because these transgenic mice also demonstrated downregulation of human CD34 gene expression with maturation of hematopoietic cells, we concluded that these critical cis-elements are necessary not only for human CD34 expression in immature cells, but also for downregulation in mature cells. To further delineate the distal cis-elements which regulate the human CD34 gene, we generated two deletion constructs which removed sequences either upstream from −12.8 kb (PmeI deletion) or downstream of +18.2 kb (FseI deletion) of the human CD34 gene. We used a murine myeloblastic cell line, 416B, to test these constructs. We first generated stable clones of 416B cells with PAC54A19; these stable clones expressed human CD34 RNA and protein. In contrast, neither PmeI nor FseI deletion constructs conferred human CD34 mRNA or protein expression in these 416B stable cell lines. Therefore, we conclude that both 5′ upstream and 3′ downstream distal cis-elements are necessary for proper human CD34 expression in cell lines. We also performed DNaseI hypersensitivity assays to localize open chromatin structures in the human CD34 gene in several human myeloblastic cell lines. We detected one DNaseI hypersensitive site (DHS) −12.5 kb upstream of the TSS and several DHS in the region located between +17 kb to +26 kb 3′ downstream of the human CD34 TTS in the human myeloblastic CD34+ KG1a cell line. In addition, we performed similarity searches of the −18 kb to −10 kb human CD34 5′ flanking sequence and +17 kb to +26 kb human CD34 3′ flanking sequence, comparing with the murine CD34 genomic sequence. We identified one conserved region in the −11.5 kb 5′ upstream region of the TSS and one highly conserved region located +19 kb 3′ downstream region of the TTS. To further localize distal cis-elements, we generated several deletion constructs in the parental PAC54A19 PAC clone using the ET cloning system, which facilitates manipulation of PACs by homologous recombination in bacteria. Using this method, we showed that deletion of a 600 bp region located 15 kb 5′ of the TSS or a 1000 bp sequence located 19 kb downstream of the human CD34 gene led to loss of human CD34 expression in 416B stable lines. Our current efforts are focused on identifying the transcription factors that bind to these regions to regulate the expression of human CD34 in stem cells.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4478-4486 ◽  
Author(s):  
Takafumi Kimura ◽  
Andreas M. Boehmler ◽  
Gabriele Seitz ◽  
Selim Kuçi ◽  
Tina Wiesner ◽  
...  

Abstract The novel immunosuppressant FTY720 activates sphingosine 1-phosphate receptors (S1PRs) that affect responsiveness of lymphocytes to chemokines such as stromal cell-derived factor 1 (SDF-1), resulting in increased lymphocyte homing to secondary lymphoid organs. Since SDF-1 and its receptor CXCR4 are also involved in bone marrow (BM) homing of hematopoietic stem and progenitor cells (HPCs), we analyzed expression of S1PRs and the influence of FTY720 on SDF-1/CXCR4-mediated effects in human HPCs. By reverse transcriptase-polymerase chain reaction (RT-PCR), S1PRs were expressed in mobilized CD34+ HPCs, particularly in primitive CD34+/CD38- cells. Incubation of HPCs with FTY720 resulted in prolonged SDF-1-induced calcium mobilization and actin polymerization, and substantially increased SDF-1-dependent in vitro transendothelial migration, without affecting VLA-4, VLA-5, and CXCR4 expression. In nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice, the number of CD34+/CD38- cells that homed to the BM after 18 hours was significantly raised by pretreatment of animals and cells with FTY720, tending to result in improved engraftment. In addition, in vitro growth of HPCs (week-5 cobblestone area-forming cells [CAFCs]) was 2.4-fold increased. We conclude that activation of S1PRs by FTY720 increases CXCR4 function in HPCs both in vitro and in vivo, supporting homing and proliferation of HPCs. In the hematopoietic microenvironment, S1PRs are involved in migration and maintenance of HPCs by modulating the effects of SDF-1. (Blood. 2004;103:4478-4486)


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 14-15
Author(s):  
Amy Fan ◽  
Armon Azizi ◽  
Kevin Nuno ◽  
Yusuke Nakauchi ◽  
Feifei Zhao ◽  
...  

Introduction: Loss-of-function mutations in Runt-related transcription factor 1 (RUNX1) are commonly found in both germline and somatic hematopoietic malignancies and confer particularly poor prognosis in AML. However, it remains unclear how RUNX1 functions during hematopoietic and leukemic development, particularly because RUNX1 mutations alone are not sufficient to cause myeloid malignancy and some models show that RUNX1 mutations confer hematopoietic stem cell defects. Recently, mouse models have shown that RUNX1-deficient neutrophils upregulate NFκB activity, and hematopoietic stem and progenitor cells (HSPCs) with overactive inflammatory pathways gain competitive advantage under chronic inflammation. Thus, we hypothesized that while RUNX1 mutations impair normal HSPC function, inflammation may select for or rescue RUNX1 mutant HSPCs. Methods: To interrogate the effect of RUNX1 loss in human CD34+ HSPCs, we disrupted the RUNX1 locus using CRISPR/Cas9 and AAV6-mediated homology directed repair. Importantly, by using an AAV6 vector that carries arms of homology flanking a fluorescent reporter expression cassette, we are able to track and isolate cells edited at the RUNX1 locus for in vitro and in vivo functional analyses and for molecular characterization using RNA-seq and ATAC-seq. Results: First, we used this system to evaluate the functional consequences of RUNX1 knockout (KO) in human CD34+ HSPCs. Loss of RUNX1 caused early erythroid-megakaryocytic differentiation arrest and skewing toward monocytic differentiation. RUNX1 KO cells demonstrated decreased proliferation, cell cycle arrest, and reduction in serial replating potential in vitro. In competitive transplantation experiments in NSG mice, RUNX1 KO engraftment decreased over time in both primary and secondary transplant, revealing a competitive disadvantage. Second, ATAC-seq peak motif analysis showed that PU.1 and NFκB motifs are more accessible upon RUNX1 KO whereas GATA, TAL1, and RUNX motifs were less accessible. Similarly, gene set enrichment analysis of transcriptional data confirmed the broad upregulation of NFκB-mediated inflammatory programs; downregulation of GATA1-dependent heme metabolism and platelet development pathways; and downregulation of MYC- and E2F-dependent cell cycle programs. These observations imply that RUNX1 directs cell fate decisions by recruiting and activating lineage-specific hematopoietic transcription factors and augmenting stem cell proliferation programs. We next sought to determine which cytokines are sufficient to drive RUNX1 KO cell expansion. RUNX1 KO cells not only expanded preferentially in NSG mice expressing human SCF, GM-CSF, and IL-3 (NSGS mice), but also were no longer defective in competitive transplants in these mice. Further, treatment with IL-3 was sufficient to significantly expand RUNX1 KO cells in vitro. Flow cytometry revealed that the IL-3 receptor CD123 is upregulated in RUNX1 KO cells compared to control. Similarly, RUNX1-mutant AML patient samples express higher levels of CD123 than RUNX1-wildtype AML patient samples. Finally, evaluation of publicly available RUNX1 ChIP-seq of bone marrow CD34+ HSPCs revealed that RUNX1 directly binds the promoter of CD123. Ongoing efforts are aimed at determining whether targeting CD123 and IL-3 signaling may be a viable therapeutic approach for the prevention or treatment of RUNX1-mutant myeloid malignancies. Conclusion: In summary, we established a RUNX1-deficient human HSPC model not only to evaluate the role of RUNX1 in hematopoiesis, but also to characterize intrinsic and extrinsic factors involved in RUNX1-deficient clonal expansion and leukemic transformation. We show that RUNX1 KO causes monocytic skew at the expense of erythro-megakaryocytic potential and severely limits HSC engraftment and expansion in vivo. Molecular profiling reveals that these effects are associated with dysregulation of both transcription factor activity and cytokine signaling. However, exposure to IL-3 rescues RUNX1-deficient cell proliferative defects in vitro and competitive engraftment defects in vivo. This hypersensitivity to IL-3 signaling is mediated in part by increased expression of the IL-3 receptor CD123. These findings reveal how RUNX1 mutations may initially behave in a deleterious manner but can ultimately confer an advantage to HSPCs under certain environmental conditions. Disclosures Majeti: CD47 Inc.: Divested equity in a private or publicly-traded company in the past 24 months; Gilead Sciences: Divested equity in a private or publicly-traded company in the past 24 months, Patents & Royalties; Kodikaz Therapeutic Solutions Inc: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 403-403
Author(s):  
Anthony Rongvaux ◽  
Tim Willinger ◽  
Hitoshi Takizawa ◽  
Chozhavendan Rathinam ◽  
Elizabeth E. Eynon ◽  
...  

Abstract Abstract 403 Hematopoietic stem cells (HSCs) both self-renew and give rise to all blood cells for the lifetime of an individual. Xenogeneic mouse models are currently broadly used to experimentally study human hematopoietic stem and progenitor cell biology in vivo. However, maintenance, differentiation, and function of human hematopoietic cells are suboptimal in these hosts. More specifically, (i) human cell engraftment is only transient, not lasting for the life of recipient mice, (ii) there is an unphysiological bias towards the lymphoid lineage as well as poor differentiation of myeloid cells, and (iii) there is an important variability in the engraftment levels between different individual animals. Thrombopoietin (TPO) has been demonstrated as a crucial cytokine supporting maintenance and self-renewal of HSCs. Although TPO is mouse to human cross-reactive at supraphysiological levels, we speculated that species differences would lead to insufficient TPO activity on human cells in the xenogeneic environment. We thus generated RAG2−/−γc−/− mice in which we replaced the gene encoding mouse TPO by its human homologue. This led to the expression of human TPO at human physiological levels in the serum and tissues of TPO knockin mice. Homozygous humanization of TPO (TPOh/h) led to significantly increased levels of human engraftment in the bone marrow of the hosts (an approximately 2-fold increase). TPOh/h recipients also displayed a lower engraftment variability, with an at least 80% human chimerism in 75% of the mice, and engraftment levels were maintained for longer periods of time, up to 6–7 months, while they declined after 4 months in control recipient mice. Multilineage differentiation of hematopoietic cells was also improved, with an increased ratio between granulocytes versus and lymphocytes that better reflects the physiological human blood composition. Thus, TPOh/h recipient mice provide significant improvements compared to previously available models in all three limitations listed above. Importantly, we performed phenotypical and functional analyses of human hematopoietic stem and progenitor cells in TPOh/h compared to control recipients. We observed a significant increase in the fraction of human Lin−CD34+CD38loCD90+CD45RA− cells, a population previously identified as highly enriched in functional long-term HSC. Because serial transplantation is the most stringent protocol to functionally measure the self-renewal capacity of HSCs, we purified human CD34+ cells from TPOh/h and control primary recipients and transplanted them into secondary recipients. Human CD34+ cells isolated from control primary recipients had a very low capacity to serially engraft (with human CD45+ cells detected in only 2 of 11 secondary recipients). By contrast, CD34+ cells isolated from TPOh/h primary recipients had an increased capacity to efficiently engraft secondary recipients (with human CD45+ cells present in the bone marrow of 15 of 19 secondary recipients). This result indicates that the presence of human TPO in the primary recipient favored the maintenance of human cells with enhanced self-renewal capacity. In conclusion, we demonstrate here that RAG2−/−γc−/− TPO-humanized mice efficiently support a population of cells immunophenotypically and functionally enriched in hematopoietic stem and progenitor cells. This leads to enhanced engraftment levels, better maintenance of human chimerism and improved multilineage differentiation. Therefore, RAG2−/−γc−/− TPO-humanized mice represent a novel model to study human hematopoiesis in vivo. We anticipate that this model will be useful to study human hematopoietic stem cells in vivo, with applications in the fields of hematopoiesis, hematology and hematolo-oncology. Disclosures: Stevens: Regeneron Pharmaceuticals: Employment; AnaptysBio Inc: Employment.


Sign in / Sign up

Export Citation Format

Share Document