Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment

Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1036-1043 ◽  
Author(s):  
Triantafyllos Chavakis ◽  
Athanasios Athanasopoulos ◽  
Joong-Sup Rhee ◽  
Valeria Orlova ◽  
Thomas Schmidt-Wöll ◽  
...  

AbstractAngiogenesis and inflammation are closely related biologic processes in wound healing and the responses to vascular injury as well as in cardiovascular diseases; however, the molecular connections are poorly defined. In particular, it is yet unclear whether endogenous factors can regulate both angiogenesis and inflammation. Here, we show that the endogenous angiogenesis inhibitor, angiostatin (containing kringle domains 1-4 of plasminogen), serves an anti-inflammatory role, since the kringles 1-3 and its kringle 4 directly interact with leukocyte β1- and β2-integrins, respectively. In particular, a specific interaction between kringle 4 and αMβ2-integrin (Mac-1) but not leukocyte function antigen 1 (LFA-1) was identified. Angiostatin thereby inhibited β1- and β2-integrin–mediated adhesion of leukocytes to extracellular matrix proteins and the endothelium as well as their transmigration through the endothelium in vitro. Moreover, angiostatin blocked the peritonitis-induced neutrophil emigration in vivo. In addition, through its interaction with Mac-1, angiostatin reduced activation of the proinflammatory transcription factor nuclear factor κB (NFκB), as well as the NFκB-related expression of tissue factor, a potent initiator of hemostasis following vascular injury. Finally, angiostatin forms were generated in vivo following skin injury/inflammation and were detectable during the following entire period of wound healing peaking at the terminal phase of the healing process. Taken together, over and above inhibition of neovascularization, angiostatin was identified as an antiadhesive/anti-inflammatory substance. These observations could provide the basis for new therapeutic applications of angiostatin to target chronic inflammatory processes in different pathologic situations.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
José Alex A. Santos ◽  
José Wellinton da Silva ◽  
Simone Maria dos Santos ◽  
Maria de Fátima Rodrigues ◽  
Camila Joyce A. Silva ◽  
...  

Babassu (Attalea speciosa Mart. ex Spreng., Arecaceae) is a palm tree endemic to Brazil and found mainly in the borders of Amazon forest, where the harvesting of its fruits is an important source of income for more than 300,000 people. Among the communities of coconut breakers women, babassu oil is used in culinary, as fuel, and mostly as medicinal oil for the treatment of skin wounds and inflammation. This study aimed to evaluate in vitro and in vivo the wound healing effects of babassu oil. In vitro, babassu oil increased the migration of L929 fibroblasts, inhibited the production of nitric oxide by LPS-stimulated peritoneal macrophages, and increased the levels of INF-γ and IL-6 cytokines production. In vivo, babassu oil accelerated the healing process in a full-thickness splinted wound model, by an increase in the fibroblasts number, blood vessels, and collagen deposition in the wounds. The babassu oil also increased the recruitment of inflammatory cells into the wound site and showed an anti-inflammatory effect in a chronic ear edema model, reducing ear thickness, epidermal hyperplasia, and myeloperoxidase activity. Thus, these data corroborate the use of babassu oil in folk medicine as a remedy to treat skin wounds.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


2017 ◽  
Vol 751 ◽  
pp. 581-585 ◽  
Author(s):  
Piyaporn Kampeerapappun ◽  
Pornpen Siridamrong

The objective of this study was to investigate sericin-polyurethane nanofiber cover (SUC) for wound dressing materials in a rat skin. Sericin-polyurethane blended nanofibers were fabricated by using electrospinning. The composition of 3%w/v polyurethane in ethanol and 19% w/v sericin were blended and electrospun at 15 kV, 20 cm from tip to collector with a feed rate of 6.2 ml/hr. The mats, approximately 1.5 mm thick, were sterile by gamma irradiation with a radiation dose of 15 kGy. The samples of in vitro and in vivo testing were separated into three groups; gauze, polyurethane nanofiber cover (UC), and SUC. In vitro cultured L929 cell lines were investigated with inverted microscope. It was found that cells migrated to SCU. For in vivo tests, the remaining wound in rats was measured on day 2-14 after excision. Compared to original size of wound samples, the size of the wound remained 24% for SUC, 33% for gauze, and 34% for UC at day 8. The sericin, an active agent, contained in SUC mats was about 5 µl at 1.5 ×1.5 cm. It can be concluded that sericin is non-toxic to cells and can promote wound healing process in rats.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3116
Author(s):  
Thien Do ◽  
Tien Nguyen ◽  
Minh Ho ◽  
Nghi Nguyen ◽  
Thai Do ◽  
...  

(1) Background: Wounds with damages to the subcutaneous are difficult to regenerate because of the tissue damages and complications such as bacterial infection. (2) Methods: In this study, we created burn wounds on pigs and investigated the efficacy of three biomaterials: polycaprolactone-gelatin-silver membrane (PCLGelAg) and two commercial burn dressings, Aquacel® Ag and UrgoTulTM silver sulfadiazine. In vitro long-term antibacterial property and in vivo wound healing performance were investigated. Agar diffusion assays were employed to evaluate bacterial inhibition at different time intervals. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assays were used to compare antibacterial strength among samples. Second-degree burn wounds in the pig model were designed to evaluate the efficiency of all dressings in supporting the wound healing process. (3) Results: The results showed that PCLGelAg membrane was the most effective in killing both Gram-positive and Gram-negative bacteria bacteria with the lowest MBC value. All three dressings (PCLGelAg, Aquacel, and UrgoTul) exhibited bactericidal effect during the first 24 h, supported wound healing as well as prevented infection and inflammation. (4) Conclusions: The results suggest that the PCLGelAg membrane is a practical solution for the treatment of severe burn injury and other infection-related skin complications.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1153
Author(s):  
Verena Schneider ◽  
Daniel Kruse ◽  
Ives Bernardelli de Mattos ◽  
Saskia Zöphel ◽  
Kendra-Kathrin Tiltmann ◽  
...  

Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25% to 5% of the model area and the inflammatory response (IL-1β, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.


2021 ◽  
Author(s):  
Jinju Li ◽  
Rongge Shao ◽  
Qiuwen Xie ◽  
XueKe Du

Abstract Purpose:Ulinastatin (UTI) is an endogenous protease inhibitor with potent anti-inflammatory, antioxidant and organ protective effects. The inhibitor has been reported to ameliorate inflammatory lung injury but precise mechanisms remain unclear. Methods: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). The number of neutrophils and the phagocytosis of apoptotic neutrophils were observed by Diff- Quick method. Lung injury was observed by HE staining .BALF cells were counted by hemocytometer and concentrations of protein plus inflammatory factors were measured with a BCA test kit. During in vitro experiments, RAW264.7 cells were pretreated with UTI (1000 and 5000U/ mL), stained with CellTrackerTM Green B0DIPYTM and HL60 cells added with UV-induced apoptosis and PKH26 Red staining. The expression of ERK5\Mer related proteins was detected by western blot and immunofluorescence.Results: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). UTI treatment enhanced the phagocytotic effect of mouse alveolar macrophages on neutrophils, alleviated lung lesions, decreased the pro-inflammatory factor and total protein content of BALF and increased levels of anti-inflammatory factors. in vitro experiments ,UTI enhanced the phagocytosis of apoptotic bodies by RAW264.7 cells in a dose-dependent manner. Increased expression levels of ERK5 and Mer by UTI were shown by Western blotting and immunofluorescence.Conclusions: UTI mediated the activation of the ERK5/Mer signaling pathway, enhanced phagocytosis of neutrophils by macrophages and improved lung inflammation. The current study indicates potential new clinical approaches for accelerating the recovery from lung inflammation.


2021 ◽  
Vol 266 ◽  
pp. 113408
Author(s):  
Mehmet Evren Okur ◽  
Ayşe Esra Karadağ ◽  
Yağmur Özhan ◽  
Hande Sipahi ◽  
Şule Ayla ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Komakech ◽  
Motlalepula Gilbert Matsabisa ◽  
Youngmin Kang

Wounds remain one of the major causes of death worldwide. Over the years medicinal plants and natural compounds have played an integral role in wound treatment. Aspilia africana (Pers.) C. D. Adams which is classified among substances with low toxicity has been used for generations in African traditional medicine to treat wounds, including stopping bleeding even from severed arteries. This review examined the potential of the extracts and phytochemicals from A. africana, a common herbaceous flowering plant which is native to Africa in wound healing. In vitro and in vivo studies have provided strong pharmacological evidences for wound healing effects of A. africana-derived extracts and phytochemicals. Singly or in synergy, the different bioactive phytochemicals including alkaloids, saponins, tannins, flavonoids, phenols, terpenoids, β-caryophyllene, germacrene D, α-pinene, carene, phytol, and linolenic acid in A. africana have been observed to exhibit a very strong anti-inflammatory, antimicrobial, and antioxidant activities which are important processes in wound healing. Indeed, A. africana wound healing ability is furthermore due to the fact that it can effectively reduce wound bleeding, hasten wound contraction, increase the concentration of basic fibroblast growth factor (BFGF) and platelet derived growth factor, and stimulate the haematological parameters, including white and red blood cells, all of which are vital components for the wound healing process. Therefore, these facts may justify why A. africana is used to treat wounds in ethnomedicine.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Le Hang Dang ◽  
Thi Hiep Nguyen ◽  
Ha Le Bao Tran ◽  
Vu Nguyen Doan ◽  
Ngoc Quyen Tran

Burn wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Curcumin is believed to be a potent antioxidant and anti-inflammatory agent; therefore, it can prevent the prolonged presence of oxygen free radicals which is a significant factor causing inhabitation of optimum healing process. This study describes an extension of study about the biofunctional nanocomposite hydrogel platform that was prepared by using curcumin and an amphiphilic chitosan-g-pluronic copolymer specialized in burn wound healing application. This formular (nCur-CP, nanocomposite hydrogel) was a free-flowing sol at ambient temperature and instantly converted into a nonflowing gel at body temperature. In addition, the storage study determined the great stability level of nCur-CP in long time using UV-Vis and DLS. Morphology and distribution of nCur in its nanocomposite hydrogels were observed by SEM and TEM, respectively. In vitro studies suggested that nCur-CP exhibited well fibroblast proliferation and ability in antimicrobacteria. Furthermore, second- and third-degree burn wound models were employed to evaluate the in vivo wound healing activity of the nCur-CP. In the second-degree wound model, the nanocomposite hydrogel group showed a higher regenerated collagen density and thicker epidermis layer formation. In third degree, the nCur-CP group also exhibited enhancement of wound closure. Besides, in both models, the nanocomposite material-treated groups showed higher collagen content, better granulation, and higher wound maturity. Histopathologic examination also implied that the nanocomposite hydrogel based on nanocurcumin and chitosan could enhance burn wound repair. In conclusion, the biocompatible and injectable nanocomposite scaffold might have great potential to apply for wound healing.


Sign in / Sign up

Export Citation Format

Share Document