Anti-inflammatory, analgesic and in vivo-in vitro wound healing potential of the Phlomis rigida Labill. extract

2021 ◽  
Vol 266 ◽  
pp. 113408
Author(s):  
Mehmet Evren Okur ◽  
Ayşe Esra Karadağ ◽  
Yağmur Özhan ◽  
Hande Sipahi ◽  
Şule Ayla ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
José Alex A. Santos ◽  
José Wellinton da Silva ◽  
Simone Maria dos Santos ◽  
Maria de Fátima Rodrigues ◽  
Camila Joyce A. Silva ◽  
...  

Babassu (Attalea speciosa Mart. ex Spreng., Arecaceae) is a palm tree endemic to Brazil and found mainly in the borders of Amazon forest, where the harvesting of its fruits is an important source of income for more than 300,000 people. Among the communities of coconut breakers women, babassu oil is used in culinary, as fuel, and mostly as medicinal oil for the treatment of skin wounds and inflammation. This study aimed to evaluate in vitro and in vivo the wound healing effects of babassu oil. In vitro, babassu oil increased the migration of L929 fibroblasts, inhibited the production of nitric oxide by LPS-stimulated peritoneal macrophages, and increased the levels of INF-γ and IL-6 cytokines production. In vivo, babassu oil accelerated the healing process in a full-thickness splinted wound model, by an increase in the fibroblasts number, blood vessels, and collagen deposition in the wounds. The babassu oil also increased the recruitment of inflammatory cells into the wound site and showed an anti-inflammatory effect in a chronic ear edema model, reducing ear thickness, epidermal hyperplasia, and myeloperoxidase activity. Thus, these data corroborate the use of babassu oil in folk medicine as a remedy to treat skin wounds.


Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1036-1043 ◽  
Author(s):  
Triantafyllos Chavakis ◽  
Athanasios Athanasopoulos ◽  
Joong-Sup Rhee ◽  
Valeria Orlova ◽  
Thomas Schmidt-Wöll ◽  
...  

AbstractAngiogenesis and inflammation are closely related biologic processes in wound healing and the responses to vascular injury as well as in cardiovascular diseases; however, the molecular connections are poorly defined. In particular, it is yet unclear whether endogenous factors can regulate both angiogenesis and inflammation. Here, we show that the endogenous angiogenesis inhibitor, angiostatin (containing kringle domains 1-4 of plasminogen), serves an anti-inflammatory role, since the kringles 1-3 and its kringle 4 directly interact with leukocyte β1- and β2-integrins, respectively. In particular, a specific interaction between kringle 4 and αMβ2-integrin (Mac-1) but not leukocyte function antigen 1 (LFA-1) was identified. Angiostatin thereby inhibited β1- and β2-integrin–mediated adhesion of leukocytes to extracellular matrix proteins and the endothelium as well as their transmigration through the endothelium in vitro. Moreover, angiostatin blocked the peritonitis-induced neutrophil emigration in vivo. In addition, through its interaction with Mac-1, angiostatin reduced activation of the proinflammatory transcription factor nuclear factor κB (NFκB), as well as the NFκB-related expression of tissue factor, a potent initiator of hemostasis following vascular injury. Finally, angiostatin forms were generated in vivo following skin injury/inflammation and were detectable during the following entire period of wound healing peaking at the terminal phase of the healing process. Taken together, over and above inhibition of neovascularization, angiostatin was identified as an antiadhesive/anti-inflammatory substance. These observations could provide the basis for new therapeutic applications of angiostatin to target chronic inflammatory processes in different pathologic situations.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2695
Author(s):  
Mehmet Evren Okur ◽  
Ayşe Esra Karadağ ◽  
Neslihan Üstündağ Okur ◽  
Yağmur Özhan ◽  
Hande Sipahi ◽  
...  

The air-dried aerial parts of Phlomis russeliana (Sims) Lag. Ex Benth. was extracted by methanol and fractionated by n-hexane, dichloromethane, and ethyl acetate, respectively. The wound healing properties of P. russeliana extract gel was evaluated using the in vivo excisional wound model using Balb-c mice. Initially, the P. russeliana methanol extract showed LOX inhibitory activity at IC50 = 23.2 µg/mL, whereas the DPPH• assay showed IC50 = 0.89 mg/mL, and the ABTS• assay showed IC50 = 0.99 mg/mL, respectively. In addition, a remarkable anti-inflammatory activity was observed in the cell culture assay. Thereafter, activity-guided fractionation was performed by LOX enzyme inhibition assays, and the structures of the two most active fractions were revealed by both GC–FID and GC/MS analyses, simultaneously. Phytol and 1-heptadecanoic acid were characterized as the active constituents. Moreover, the P. russeliana extract gel formulation was applied for in vivo tests, where the new gel formulation supported the in vitro anti-inflammatory activity findings. As a conclusion, this experimental results support the wound healing evidence based on the ethnobotanical application of Phlomis species with further potential.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Anca D. Farcaș ◽  
Augustin C. Moț ◽  
Alina E. Pârvu ◽  
Vlad Al. Toma ◽  
Mirel A. Popa ◽  
...  

Known for centuries throughout the world, Plantago species have long been used as traditional herbal remedies for many diseases related to inflammatory conditions of the skin, respiratory and digestive tract, or even malignancy. This study is aimed first at investigating the in vitro antioxidant and regenerative effects of Plantago sempervirens Crantz hydroalcoholic extract followed by an in vivo experiment using a turpentine oil-induced inflammation model. The in vitro evaluation for antioxidant activity was performed using classical assays such as DPPH and TEAC scavenging assays but also EPR, and the total phenolic content was determined using the Folin-Ciocalteu reagent. The wound healing assay was performed on human cells (Human EA.hy926). Besides, the prooxidant activity was determined using a method which involves in situ free radical generation by laccase and the oxidation of haemoglobin. On turpentine oil-induced inflammation in rats, the in vivo effects of three doses of P. sempervirens extracts (100%, 50%, and 25%) were assessed by measuring oxidative stress (MDA, TOS, OSI, NO, CAT, and SOD) and inflammatory (CRP, WBC, and NEU) parameters. Having a rich polyphenolic content, the xerophyte P. sempervirens exhibited a strong in vitro antioxidant activity by scavenging radicals, enhancing cell regeneration, and reducing oxidative stress markers. Diluted P. sempervirens extract (25%) exhibited the best antioxidant, wound healing, and anti-inflammatory activity.


2021 ◽  
Author(s):  
Muzhou Teng ◽  
Zhijia Li ◽  
Zhihui Lu ◽  
Keke Wu ◽  
Jinshan Guo

Abstract Background: Efficient resolution of oxidative stress, inflammation and bacterial infections are crucial for wound healing. To surmount these problems, tannic acid (TA)-bridged CeO2 microcubes and chitosan (CS) (CS-TA@CeO2) cryogel was fabricated through hydrogen bonding interactions as a multifunctional wound dressing. Results: The physicochemical characterizations confirmed the successful introduction and uniform incorporation of TA@CeO2 microcubes into CS network. Thus-obtained CS-TA@CeO2 cryogels displayed suitable porous structure and swelling ratio. The CS-TA@CeO2 cryogels exhibited favorable antioxidant ability evidenced by scavenging more than 82.9% ROS in vitro and significantly increasing the antioxidant enzyme levels in vivo. The anti-inflammatory ability of the cryogels was confirmed by the downregulated expression of the inflammatory cytokine, tumor necrosis factor-alpha (TNF-α) and the upregulated expression of the anti-inflammatory cytokine, interleukin-10 (IL-10). The multifunctional cryogels also showed excellent antibacterial activities against Gram-positive (S.aureus) and Gram-negative (E.coli) bacteria. Furthermore, the cryogels can promote the adhesion and proliferation of mouse fibroblasts (L929) cells. Moreover, CS-TA@CeO2 cryogels presented excellent hemostatic performance in rat tail amputation model. In vivo Sprague-Dawley (SD) rats full-thickness experiments illustrated that the cryogels can significantly accelerate wound healing through providing considerable antioxidant activity, promoting angiogenesis, and increasing collagen deposition. Conclusions: Overall, the multifunctional CS-TA@CeO2 cryogels showed great potential for wound healing.


Author(s):  
RAM NARENDRAN R ◽  
MALEEKA BEGUM SF ◽  
RUBAVATHI S

Objective: The current study is to evaluate the antimicrobial, antioxidant, anti-inflammatory, and in vitro cytotoxicity activities of polyhydroxybutyrate (PHB) and to develop the herbal impregnated PHB cast film for wound healing activities using Albino Wistar rat model. Methods: PHB produced by Azotobacter chroococcum A3 strain was synthesized and characterized (previous study). The PHB was subjected to various biocompatibility studies such as antimicrobial, antioxidant, and anti-inflammatory studies. The PHB was also subjected to cytotoxicity study by (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. PHB films were made using different combinations of plant and algal blends (herbal blends). The herbal blends of PHB films were evaluated for in vivo wound healing activity using Albino Wistar rats. Results: The turmeric impregnated PHB showed the highest result for antimicrobial with 27.25±0.23 mm against skin pathogens and antioxidant activity with the highest percentage of inhibition of 76%. The result predicts that PHB will not let to any toxic substances rather it acts as a chemoprotective agent followed by the inhibitory concentration value was found to be 1.56 μg/ml for 100 μg. The in vivo study showed better wound healing activity for PHB blended with 2% turmeric leaf and rhizome cast film. Whereas the wound healing activity of control and crude PHB was 90.4±0.4 and 91.3±0.56 respectively. Conclusion: The results from the present study showed that PHB can act as a good candidate for drug carrier and it is biocompatible in living cells.


Nanomedicine ◽  
2020 ◽  
Vol 15 (17) ◽  
pp. 1671-1685 ◽  
Author(s):  
Mohamad Allaw ◽  
Maria Pleguezuelos-Villa ◽  
Maria Letizia Manca ◽  
Carla Caddeo ◽  
Matteo Aroffu ◽  
...  

Aim: The moisturizing properties of glycerol, the penetration enhancing capability of propylene glycol and the bioadhesive properties of mucin were combined to improve the carrier capabilities of transfersomes and the efficacy of mangiferin in the treatment of skin lesions. Materials & methods: Mangiferin was incorporated in transfersomes and glycoltransfersomes, which were also modified with mucin. The physico–chemical features were assessed, along with the efficacy against oxidative stress and skin wounds in vitro and in vivo. Results: Glycoltransfersomes promoted the deposition of mangiferin in epidermis and dermis, protected fibroblasts from oxidative stress and stimulated their proliferation. The wound healing and anti-inflammatory efficacy of glycoltransfersomes were confirmed in vivo. Conclusion: Results confirmed the potential of glycoltransfersomes in preventing/treating of skin lesions.


2019 ◽  
Vol 14 (6) ◽  
pp. 841-855 ◽  
Author(s):  
Chunhua Yang ◽  
Mingzhen Zhang ◽  
Junsik Sung ◽  
Lixin Wang ◽  
Yunjin Jung ◽  
...  

Abstract Background and Aims Epigenetic information delivered by intestinal exosomes can be useful for diagnosing intestinal diseases, such as ulcerative colitis, but the therapeutic effects of intestinal exosomes have not been fully exploited. We herein developed an autologous exosome therapy that could treat intestinal disease without any risk of inducing a systemic immunological reaction. Methods Intestinal exosomes were isolated and purified from faeces by our newly developed multi-step sucrose gradient ultracentrifugation method. Lipopolysaccharide [LPS]-activated macrophages were employed to test the in vitro anti-inflammatory ability of intestinal exosomes. To evaluate the in vivo anti-inflammatory activity of our system, we gavaged dextran sulphate sodium [DSS]-induced colitic mice with their own healing phase intestinal exosomes. Results Mouse intestinal exosomes are round extracellular vesicles with a hydrodynamic diameter of ~140 [±20] nm and a surface charge of ~-12 [±3] mV. Among the exosomes obtained at four different stages of DSS-induced ulcerative colitis [1, before treatment; 2, DSS-treated; 3, healing phase; and 4, back to normal], the healing phase exosomes showed the best in vitro anti-inflammatory effects and promotion of wound healing. Moreover, oral co-administration of autologous healing phase exosomes with DSS was found to significantly reduce the risk of a second round of DSS-induced ulcerative colitis in mice. Conclusions Intestinal exosomes obtained during the healing phase that follows induced intestinal inflammation could strongly promote wound healing in the host. Oral administration of autologous exosomes from the healing phase could be a safe and effective approach for treating the ulcerative colitis of a given patient in the context of personalised medicine.


2019 ◽  
Vol 20 (10) ◽  
pp. 2579 ◽  
Author(s):  
Chang-Chih Chen ◽  
Chia-Jen Nien ◽  
Lih-Geeng Chen ◽  
Kuen-Yu Huang ◽  
Wei-Jen Chang ◽  
...  

Sapindus mukorossi seed oil is commonly used as a source for biodiesel fuel. Its phytochemical composition is similar to the extracted oil from Sapindus trifoliatus seeds, which exhibit beneficial effects for skin wound healing. Since S. mukorossi seed shows no cyanogenic property, it could be a potential candidate for the treatment of skin wounds. Thus, we evaluated the effectiveness of S. mukorossi seed oil in the treatment of skin wounds. We characterized and quantified the fatty acids and unsaponifiable fractions (including β-sitosterol and δ-tocopherol) contained in S. mukorossi seed-extracted oil by GC-MS and HPLC, respectively. Cell proliferation and migratory ability were evaluated by cell viability and scratch experiments using CCD-966SK cells treated with S. mukorossi oil. The anti-inflammatory effects of the oil were evaluated by measuring the nitric oxide (NO) production in lipopolysaccharide-treated RAW 264.7 cells. Antimicrobial activity tests were performed with Propionibacterium acnes, Staphylococcus aureus, and Candida albicans using a modified Japanese Industrial Standard procedure. Uniform artificial wounds were created on the dorsum of rats. The wounds were treated with a carboxymethyl cellulose (CMC)/hyaluronic acid (HA)/sodium alginate (SA) hydrogel for releasing the S. mukorossi seed oil. The wound sizes were measured photographically for 12 days and were compared to wounds covered with analogous membranes containing a saline solution. Our results showed that the S. mukorossi seed oil used in this study contains abundant monounsaturated fatty acids, β-sitosterol, and δ-tocopherol. In the in vitro tests, S. mukorossi seed oil prompted cell proliferation and migration capability. Additionally, the oil had significant anti-inflammatory and anti-microbial activities. In the in vivo animal experiments, S. mukorossi seed oil-treated wounds revealed acceleration of sequential skin wound healing events after two days of healing. The size of oil-treated wound decreased to half the size of the untreated control after eight days of healing. The results suggest that S. mukorossi seed oil could be a potential source for promoting skin wound healing.


Sign in / Sign up

Export Citation Format

Share Document