scholarly journals Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells

Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1085-1091 ◽  
Author(s):  
Jamie L. Fornek ◽  
Lorraine T. Tygrett ◽  
Thomas J. Waldschmidt ◽  
Valeria Poli ◽  
Robert C. Rickert ◽  
...  

AbstractStat proteins are latent cytoplasmic transcription factors that are crucial in many aspects of mammalian development. In the immune system, Stat3 has distinct roles in T-cell, neutrophil, and macrophage function, but a role for Stat3 in B-cell development, particularly in the terminal differentiation of B cells into antibody-secreting plasma cells, has never been directly tested. In this study, we used the Cre/lox system to generate a mouse strain in which Stat3 was conditionally deleted in the B-cell lineage (Stat3fl/flCD19Cre/+). B-cell development, establishment of the peripheral B-cell compartment, and baseline serum antibody levels were unperturbed in Stat3fl/flCD19Cre/+ mice. Strikingly, Stat3fl/flCD19Cre/+ mice displayed profound defects in T-dependent (TD) IgG responses, but normal TD IgM, IgE, and IgA responses and T-independent (TI) IgM and IgG3 responses. In addition, germinal center (GC) formation, isotype switching, and generation of memory B cells, including IgG+ memory cells, were all intact in Stat3fl/flCD19Cre/+ mice, indicating that the requirement for Stat3 was limited to plasma cell differentiation. These results demonstrate a profound yet highly selective role for Stat3 in TD IgG plasma cell differentiation, and therefore represent a unique example of a transcription factor regulating isotype-specific terminal B-cell differentiation.

2009 ◽  
Vol 186 (6) ◽  
pp. i13-i13
Author(s):  
Derrick J. Todd ◽  
Louise J. McHeyzer-Williams ◽  
Czeslawa Kowal ◽  
Ann-Hwee Lee ◽  
Bruce T. Volpe ◽  
...  

2014 ◽  
Vol 211 (11) ◽  
pp. 2169-2181 ◽  
Author(s):  
Sebastian Carotta ◽  
Simon N. Willis ◽  
Jhagvaral Hasbold ◽  
Michael Inouye ◽  
Swee Heng Milon Pang ◽  
...  

Activated B cells undergo immunoglobulin class-switch recombination (CSR) and differentiate into antibody-secreting plasma cells. The distinct transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors: those that maintain the B cell program, including BCL6 and PAX5, and plasma cell–promoting factors, such as IRF4 and BLIMP-1. We show that the complex of IRF8 and PU.1 controls the propensity of B cells to undergo CSR and plasma cell differentiation by concurrently promoting the expression of BCL6 and PAX5 and repressing AID and BLIMP-1. As the PU.1–IRF8 complex functions in a reciprocal manner to IRF4, we propose that concentration-dependent competition between these factors controls B cell terminal differentiation.


2021 ◽  
Author(s):  
Etienne Masle-Farquhar ◽  
Timothy J. Peters ◽  
Lisa A. Miosge ◽  
Ian A Parish ◽  
Christoph Weigel ◽  
...  

CD21low age-associated or atypical memory B cells, enriched for autoantibodies and poised for plasma cell differentiation, accumulate in large numbers in chronic infections, autoimmune disease and immunodeficiency, posing the question of what checkpoints normally oppose their excessive accumulation. Here, we reveal a critical role for the calcium-NFAT-regulated transcription factors EGR2 and EGR3. In the absence of EGR2 and EGR3 within B cells, CD21low and B1 B cells accumulate and circulate in young mice in numbers 10-20 times greater than normal, over-express a large set of EGR2 ChIP-seq target genes including known drivers of plasma cell differentiation and under-express drivers of follicular germinal centers. Most follicular B cells constitutively express Egr2 proportionally to surface IgM down-regulation by self-antigens, and EGR2/3 deficiency abolishes this characteristic anergy response. These results define a key transcriptional checkpoint repressing CD21low B cell formation and inform how NFATC1 or EGR2 mutations promote B1 cell-derived chronic lymphocytic leukemias.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1804-1812 ◽  
Author(s):  
Heike Schmidlin ◽  
Sean A. Diehl ◽  
Maho Nagasawa ◽  
Ferenc A. Scheeren ◽  
Remko Schotte ◽  
...  

Abstract The terminal differentiation of B cells into antibody-secreting plasma cells is tightly regulated by a complex network of transcription factors. Here we evaluated the role of the Ets factor Spi-B during terminal differentiation of human B cells. All mature tonsil and peripheral blood B-cell subsets expressed Spi-B, with the exception of plasma cells. Overexpression of Spi-B in CD19+ B cells inhibited, similar to the known inhibitor BCL-6, the expression of plasma cell–associated surface markers and transcription factors as well as immunoglobulin production, ie, in vitro plasma cell differentiation. The arrest in B-cell differentiation enforced by Spi-B was independent of the transactivation domain, but dependent on the Ets-domain. By chromatin immunoprecipitation and assays using an inducible Spi-B construct BLIMP1 and XBP-1 were identified as direct target genes of Spi-B mediated repression. We propose a novel role for Spi-B in maintenance of germinal center and memory B cells by direct repression of major plasma cell factors and thereby plasma cell differentiation.


Blood ◽  
2011 ◽  
Vol 117 (22) ◽  
pp. 5907-5917 ◽  
Author(s):  
Katerina Vrzalikova ◽  
Martina Vockerodt ◽  
Sarah Leonard ◽  
Andrew Bell ◽  
Wenbin Wei ◽  
...  

AbstractAn important pathogenic event in Epstein-Barr virus (EBV)-associated lymphomas is the suppression of virus replication, which would otherwise lead to cell death. Because virus replication in B cells is intimately linked to their differentiation toward plasma cells, we asked whether the physiologic signals that drive normal B-cell differentiation are absent in EBV-transformed cells. We focused on BLIMP1α, a transcription factor that is required for plasma cell differentiation and that is inactivated in diffuse large B-cell lymphomas. We show that BLIMP1α expression is down-regulated after EBV infection of primary germinal center B cells and that the EBV oncogene, latent membrane protein-1 (LMP-1), is alone capable of inducing this down-regulation in these cells. Furthermore, the down-regulation of BLIMP1α by LMP-1 was accompanied by a partial disruption of the BLIMP1α transcriptional program, including the aberrant induction of MYC, the repression of which is required for terminal differentiation. Finally, we show that the ectopic expression of BLIMP1α in EBV-transformed cells can induce the viral lytic cycle. Our results suggest that LMP-1 expression in progenitor germinal center B cells could contribute to the pathogenesis of EBV-associated lymphomas by down-regulating BLIMP1α, in turn preventing plasma cell differentiation and induction of the viral lytic cycle.


2017 ◽  
Vol 8 ◽  
Author(s):  
Swadhinya Arjunaraja ◽  
Brent D. Nosé ◽  
Gauthaman Sukumar ◽  
Nathaniel M. Lott ◽  
Clifton L. Dalgard ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3288-3288
Author(s):  
Brian Gaudette ◽  
Neal N Iwakoshi ◽  
Lawrence H. Boise

Abstract Abstract 3288 Understanding factors that control plasma cell survival is important for the development of therapeutic approaches to diseases including multiple myeloma and autoimmune disorders. As part of the program that allows for B cell differentiation to a plasma cell, a required signal includes the activation of an unfolded protein response (UPR). However unlike stress-induced activation of the UPR, induction of apoptosis does not occur, suggesting that compensatory survival signals are also activated during plasma cell differentiation. The compensatory survival pathways are less defined and require further research. Therefore we employed a model of plasma cell differentiation to better define the survival signaling during this process. The murine B cell lymphoma cell line, Bcl1 can be stimulated to secrete immunoglobulin using IL-5 and LPS. To determine the effects of exogenous ER stress on plasma cell differentiation, we treated the cells with the inhibitor of N-linked glycosylation, tunicamycin, for 5 hours prior to the differentiation signal. The 5 hour pulse of tunicamycin was sufficient to induce significant apoptosis in undifferentiated cells or cells treated with IL-5, resulting in 78% and 74% cell death respectively by 24 hours post treatment. However, if LPS was included in the differentiation stimulus the cells were able to differentiate into IgM-secreting plasma cells with similar kinetics as cells differentiated in the absence of tunicamycin pretreatment. Thus LPS-induced differentiation is sufficient to block ER stress-induced cell death. Since these cells also activate a UPR during differentiation, we hypothesized that part of the differentiation program included protection from UPR-associated cell death. To investigate this effect, we first examined the levels of the antiapoptotic proteins Bcl-2, Bcl-xL and Mcl-1 during plasma cell differentiation. We found that differentiation induced Bcl-xL and caused the loss of Mcl-1. From this data we hypothesized that the differentiation of these cells resulted in Bcl-xL dependence during plasma cell differentiation. To test this we used ABT-737, which selectively blocks the binding pocket of Bcl-xL and Bcl-2 but not Mcl-1 and kills cells that are dependent on Bcl-2 or Bcl-xL. Undifferentiated Bcl1 cells were insensitive to ABT-737 with an IC50 > 2μM. However ABT-737 sensitized LPS-treated Bcl1 cells to tunicamycin pretreatment resulting in 89% death in 24 h compared to 23% in untreated cells. These data suggest that the induction of Bcl-xL is responsible for the survival of cells undergoing ER stress. Most importantly, cells treated with LPS and IL-5 for differentiation became sensitive to ABT-737 with 59% cell death versus 26% in untreated cells, thus demonstrating that during plasma cell differentiation, cells switch to a Bcl-xL-dependent state. To determine the molecular basis for these findings we investigated the effects of ABT-737 on the expression levels of Bcl-2 proteins as well as the effects of differentiation on their interactions. ABT-737 did not induce changes in the expression of Bcl-2 family proteins. However, co-immunoprecipitation demonstrated a shift in Bim binding from Mcl-1 in untreated cells to Bcl-xL in differentiating cells. This latter finding is consistent with a shift from Mcl-1 dependence to Bcl-xL during plasma cell differentiation. To validate these data, primary C57BL/6 splenocytes were isolated, depleted of non-B cells and subsequently stimulated with IL-4 and LPS to differentiate into plasmablasts. Realtime qPCR showed an increase in Bcl-xL mRNA and loss of Mcl-1 and Bcl-2 mRNA in both the primary B cells and the Bcl1 cell line. Western blotting of primary B cell lysates also showed an increase in Bcl-xL protein and loss of Bcl-2 and Mcl-1 protein. Together these data indicate that during plasma cell differentiation the cell enters a Bcl-xL-dependent state that protects against differentiation-induced apoptosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 783-783
Author(s):  
Chuanxin Huang ◽  
Ann Haberman ◽  
Ari M. Melnick

Abstract The transcriptional repressor Bcl6 is a master regulator of the germinal center (GC) reaction through directing naïve B cells and CD4+ T cells to differentiate into GC B cells and follicular T helper (TFH) cells respectively. Bcl6 mediates its action largely by recruitment of co-repressors through its N-terminal BTB domain and its middle second repression domain (RD2). The BTB domain repression function is critical for GC B cell survival and proliferation, but not important for TFH cell differentiation. However, the in vivobiological function of RD2 remains unknown. To explore the specific role of RD2 transcriptional repression in the GC reaction, we generated a knockin mouse model in which the endogenous Bcl6 locus encodes a mutant form of the protein that specifically disrupts RD2 mediated transcriptional repression. RD2 mutant mice were developmentally indistinguishable from wild-type mice and displayed normal B cell development prior to the GC phase. However, these mice failed to accumulate GCs after immunization with sheep blood cells and exhibited remarkably impaired production of high-affinity antibodies 21 days after T-cell dependent antigen immunization, indicative of severe deficiency of the GC reaction. Mixed bone marrow transplantation experiments showed that RD2 loss of function led to complete loss of GC B cells and partial impairment of TFH cell differentiation in cell-intrinsic manner. Intravital imaging analysis indicated that RD2-deficent antigen-engaged B cells migrate normally to the inter-follicular zone of lymph nodes and interacted normally with cognate T helper cells. To further understand the nature of the functional defect of RD2 mutant B-cells, hen egg lysosome (HEL)-specific RD2-deficient GFP B cells and wild type RFP B cells (with the ratio 1:1) were transferred together with non-fluorescent ovalbumin (OVA)-specific T cells into SMARTA hosts, which were then immunized at the footpad with HEL-OVA two days later. On day 5 after immunization, draining popliteal lymph nodes were harvested and subjected for immunofluorescence histology analysis. At this time point, wild-type RFP B cells have started to cluster into tiny GC, whereas RD2-deficient GFP B cells did not form GCs. Moreover, wild-type B cells in the follicular interior were predominantly Bcl6hi, a characteristic of pre-GC B cells, suggesting that they could serve as a source of GC B cells. By contrast, RD2-deficient GFP B cells were primarily extra-follicular, and infrequently observed in the follicle interior. Most importantly, these cells were typically Bcl6lo, demonstrating that RD2 repression function is essential for pre-GC B cell differentiation. BCL6 knockout mice display a lethal inflammatory phenotype due to aberrant T-cell and macrophage activation. In striking contrast, RD2-deficient mice experienced normal healthy lives with no inflammation, and had nearly normal inflammation cytokine production in B cells and macrophages as well as differentiation of Th1,Th2 and Th17 subtypes. Hence the RD2 repression domain is specifically involved in humoral immunity but has minimal participation in the anti-inflammatory functions of BCL6. Instead we observed that the BCL6 zing finger domain plays the key role in anti-inflammatory functions in macrophages, and through ChIP-competition assays show that this is mediated by directly competing with STATs for binding to chemokine genes. These results highlight an essential role of RD2-mediated transcriptional repression in pre-GC B cell development specifically at the early B-cell activation phase. This is different than mice with BCL6 BTB mutations where early activation is normal and the defect occurs later on in the proliferative phase of GCs. The data suggest a surprising development and cellular context-specific biochemical functions of Bcl6 governing each distinct phase of the humoral immune response and inflammation. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 9 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Zhe-Xiong Lian ◽  
Hiroto Kita ◽  
Tomoyuki Okada ◽  
Tom Hsu ◽  
Leonard D. Shultz ◽  
...  

Reductions in populations of both Pre-B cell (Hardy fractions D) and Pro-B cells (Hardy fractions B–C) have been described in association with murine lupus. Recent studies of B cell populations, based on evaluation of B cell differentiation markers, now allow the enumeration and enrichment of other stage specific precursor cells. In this study we report detailed analysis of the ontogeny of B cell lineage subsets in New Zealand black (NZB) and control strains of mice. Our data suggest that B cell development in NZB mice is partially arrested at the fraction A Pre–Pro B cell stage. This arrest at the Pre-Pro B cell stage is secondary to prolonged lifespan and greater resistance to spontaneous apoptosis. In addition, expression of the gene encoding the critical B cell development transcription factor BSAP is reduced in the Pre–Pro B cell stage in NZB mice. This impairment may influence subsequent B cell development to later stages, and thereby accounts for the down-regulation of the B cell receptor componentIgα(mb-1). Furthermore, levels of expression of theRug2, λ5andIgβ(B29) genes are also reduced in Pre–Pro B cells of NZB mice. The decreased frequency of precursor B cells in the Pre–Pro B cell population occurs at the most primitive stage of B cell differentiation.


2015 ◽  
Vol 3 (3) ◽  
pp. 265-279 ◽  
Author(s):  
Julie Ruer‐Laventie ◽  
Léa Simoni ◽  
Jean‐Nicolas Schickel ◽  
Anne Soley ◽  
Monique Duval ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document