scholarly journals Acetylation of GATA-1 is required for chromatin occupancy

Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3736-3738 ◽  
Author(s):  
Janine M. Lamonica ◽  
Christopher R. Vakoc ◽  
Gerd A. Blobel

Abstract All 3 hematopoietic GATA transcription factors, GATA-1, GATA-2, and GATA-3, are acetylated, although the in vivo role of this modification remains unclear. We examined the functions of an acetylation-defective mutant of GATA-1 in maturing erythroid cells. We found that removal of the acetylation sites in GATA-1 does not impair its nuclear localization, steady-state protein levels, or its ability to bind naked GATA elements in vitro. However, chromatin immunoprecipitation (ChIP) experiments revealed that mutant GATA-1 was dramatically impaired in binding to all examined cellular target sites in vivo, including genes that are normally activated and repressed by GATA-1. Together, these results suggest that acetylation regulates chromatin occupancy of GATA-1. These findings point to a novel function for transcription factor acetylation, perhaps by facilitating protein interactions required for stable association with chromatin templates in vivo.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1179-1179 ◽  
Author(s):  
Janine M. Lamonica ◽  
Christopher R. Vakoc ◽  
Gerd A. Blobel

Abstract All three hematopoietic GATA transcription factors GATA-1, GATA-2, and GATA-3 are acetylated, although the in vivo role of this modification remains unclear. It has been proposed that acetylation of GATA-1 increases its affinity for DNA in vitro, although this finding has not been observed by others. To study the role of GATA-1 acetylation, we examined the functions of an acetylation-defective mutant of GATA-1 in maturing erythroid cells. We found that removal of the acetylation sites in GATA-1 largely abrogates its biological activity but does not impair its nuclear localization, steady state protein levels, or its ability to bind naked GATA elements in vitro. However, chromatin immunoprecipitation (ChIP) experiments revealed that mutant GATA-1 was dramatically impaired in binding to its cellular target sites in vivo, including genes that are normally activated (α- and β-globin, EKLF, FOG-1, Band3, and AHSP) and repressed (GATA-2 and c-kit) by GATA-1. Together, these results suggest that acetylation is required for GATA-1 chromatin occupancy. These findings point to a novel function for transcription factor acetylation, perhaps by facilitating protein interactions required for stable association with chromatin templates in vivo. To identify proteins that interact with acetylated GATA-1, we performed peptide affinity chromatography using acetylated GATA-1 peptides. Using this technique coupled with mass spectrometry, several proteins that bind to GATA-1 peptides in an acetylation-dependent manner were identified. The identified proteins contain known acetyl-lysine binding modules (bromodomains) consistent with their binding properties. The in vivo role of these proteins with regard to GATA-1 function is being examined and will be discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
S. Memmert ◽  
A. Damanaki ◽  
A. V. B. Nogueira ◽  
S. Eick ◽  
M. Nokhbehsaim ◽  
...  

Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1β and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1β and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.


2007 ◽  
Vol 189 (19) ◽  
pp. 7062-7068 ◽  
Author(s):  
Weifeng She ◽  
Qinhong Wang ◽  
Elena A. Mordukhova ◽  
Valentin V. Rybenkov

ABSTRACT MukB is a bacterial SMC(structural maintenance of chromosome) protein required for correct folding of the Escherichia coli chromosome. MukB acts in complex with the two non-SMC proteins, MukE and MukF. The role of MukEF is unclear. MukEF disrupts MukB-DNA interactions in vitro. In vivo, however, MukEF stimulates MukB-induced DNA condensation and is required for the assembly of MukB clusters at the quarter positions of the cell length. We report here that MukEF is essential for stable association of MukB with the chromosome. We found that MukBEF forms a stable complex with the chromosome that copurifies with nucleoids following gentle cell lysis. Little MukB could be found with the nucleoids in the absence or upon overproduction of MukEF. Similarly, overproduced MukEF recruited MukB-green fluorescent protein (GFP) from its quarter positions, indicating that formation of MukB-GFP clusters and stable association with the chromosome could be mechanistically related. Finally, we report that MukE-GFP forms foci at the quarter positions of the cell length but not in cells that lack MukB or overproduce MukEF, suggesting that the clusters are formed by MukBEF and not by its individual subunits. These data support the view that MukBEF acts as a macromolecular assembly, a scaffold, in chromosome organization and that MukEF is essential for the assembly of this scaffold.


1995 ◽  
Vol 15 (10) ◽  
pp. 5214-5225 ◽  
Author(s):  
A D Catling ◽  
H J Schaeffer ◽  
C W Reuter ◽  
G R Reddy ◽  
M J Weber

Mammalian MEK1 and MEK2 contain a proline-rich (PR) sequence that is absent both from the yeast homologs Ste7 and Byr1 and from a recently cloned activator of the JNK/stress-activated protein kinases, SEK1/MKK4. Since this PR sequence occurs in MEKs that are regulated by Raf family enzymes but is missing from MEKs and SEKs activated independently of Raf, we sought to investigate the role of this sequence in MEK1 and MEK2 regulation and function. Deletion of the PR sequence from MEK1 blocked the ability of MEK1 to associate with members of the Raf family and markedly attenuated activation of the protein in vivo following growth factor stimulation. In addition, this sequence was necessary for efficient activation of MEK1 in vitro by B-Raf but dispensable for activation by a novel MEK1 activator which we have previously detected in fractionated fibroblast extracts. Furthermore, we found that a phosphorylation site within the PR sequence of MEK1 was required for sustained MEK1 activity in response to serum stimulation of quiescent fibroblasts. Consistent with this observation, we observed that MEK2, which lacks a phosphorylation site at the corresponding position, was activated only transiently following serum stimulation. Finally, we found that deletion of the PR sequence from a constitutively activated MEK1 mutant rendered the protein nontransforming in Rat1 fibroblasts. These observations indicate a critical role for the PR sequence in directing specific protein-protein interactions important for the activation, inactivation, and downstream functioning of the MEKs.


2021 ◽  
Author(s):  
Taylor Moncrief ◽  
Courtney J Matheny ◽  
Ivana Gaziova ◽  
John Miller ◽  
Hiroshi Qadota ◽  
...  

Proper muscle development and function depends on myosin being properly folded and integrated into the thick filament structure. For this to occur the myosin chaperone UNC-45, or UNC-45B, must be present and able to chaperone myosin. Here we use a combination of in vivo C. elegans experiments and in vitro biophysical experiments to analyze the effects of six missense mutations in conserved regions of UNC-45/UNC-45B. We found that the phenotype of paralysis and disorganized thick filaments in 5/6 of the mutant nematode strains can likely be attributed to both reduced steady state UNC-45 protein levels and reduced chaperone activity. Interestingly, the biophysical assays performed on purified proteins show that all of the mutations result in reduced myosin chaperone activity but not overall protein stability. This suggests that these mutations only cause protein instability in the in vivo setting and that these conserved regions may be involved in UNC-45 protein stability/ regulation via post translational modifications, protein-protein interactions, or some other unknown mechanism.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tinghui Duan ◽  
Diyuan Zhou ◽  
Yizhou Yao ◽  
Xinyu Shao

Colorectal cancer (CRC) is one of the most frequent malignant neoplasms worldwide, and the effect of treatments is limited. Fibroblast growth factor 1 (FGF1) has been involved in a wide variety of several malignant diseases and takes part in the tumorigenesis of CRC. However, the function and mechanism of FGF1 in CRC remains elusive. In this study, the results indicated that FGF1 is elevated in CRC tissues and linked with poor prognosis (P < 0.001). In subgroup analysis of FGF1 in CRC, regardless of any clinic-factors except gender, high level FGF1 expression was associated with markedly shorter survival (P < 0.05). In addition, the expression of p-S6K1 and FGF1 was not associated in normal tissue (P = 0.781), but their expression was closely related in tumor tissue (P = 0.010). The oncogenic role of FGF1 was determined using in vitro and in vivo functional assays. FGF1 depletion inhibited the proliferation and migration of CRC cells in vitro and vivo. FGF1 was also significantly correlated with mTOR-S6K1 pathway on the gene and protein levels (P < 0.05). In conclusion, FGF1 acts as a tumor activator in CRC, and against FGF1 may provide a new visual field on treating CRC, especially for mTORC1-targeted resistant patients.


2014 ◽  
Vol 306 (11) ◽  
pp. F1335-F1347 ◽  
Author(s):  
Keisuke Omote ◽  
Tomohito Gohda ◽  
Maki Murakoshi ◽  
Yu Sasaki ◽  
Saiko Kazuno ◽  
...  

Chronic inflammation promotes the progression of diabetic nephropathy (DN). However, the role of TNF-α remains unclear. The objectives of the present study were to examine whether TNF-α inhibition with a soluble TNF receptor (TNFR)2 fusion protein, i.e., etanercept (ETN), improves the early stage of DN in the type 2 diabetic model of the KK-Ay mouse and to also investigate which TNF pathway, TNFR1 or TNFR2, is predominantly involved in the progression of this disease. ETN was injected intraperitoneally into mice for 8 wk. Renal damage was evaluated by immunohistochemistry, Western blot analysis, and/or real-time PCR. In vitro, mouse tubular proximal cells were stimulated by TNF-α and/or high glucose (HG) and treated with ETN. ETN dramatically improved not only albuminuria but also glycemic control. Renal mRNA and/or protein levels of TNFR2, but not TNF-α and TNFR1, in ETN-treated KK-Ay mice were significantly decreased compared with untreated KK-Ay mice. mRNA levels of ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 and the number of F4/80-positive cells were all decreased after treatment. Numbers of cleaved caspase-3- and TUNEL-positive cells in untreated mice were very few and were not different from ETN-treated mice. In vitro, stimulation with TNF-α or HG markedly increased both mRNA levels of TNFRs, unlike in the in vivo case. Furthermore, ETN partly recovered TNF-α-induced but not HG-induced TNFR mRNA levels. In conclusion, it appears that ETN may improve the progression of the early stage of DN predominantly through inhibition of the anti-inflammatory action of the TNF-α-TNFR2 pathway.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii167-ii167
Author(s):  
Lili Sun ◽  
Ming Li

Abstract The four and a half LIM domain 1 (FHL1) has been considered as a tumor suppressor protein in multiple cancers. Here, we show that FHL1 plays a tumor-promoting role in glioblastoma, the most common and incurable brain cancer. Overexpression of FHL1 promotes the growth, migration, and invasion of GBM cells in vivo and in vitro. In contrast, FHL1 silencing exhibits the opposite effects. Mechanically, FHL1 upregulates EGFR expression and activates the downstream AKT / ERK1 / 2 / STAT3 signaling pathways. We further demonstrated that SP1 can also be induced by FHL1 expression, and FHL1 interacts with SP1 to upregulate EGFR expression at both mRNA and protein levels, leading to glioblastoma malignancy. Clinically, FHL1 is highly expressed in glioblastoma and shows positive correlation with EGFR and SP1 in GBM specimens. Our results suggest the key role of FHL1 in the expression of EGFR and highlight the translation potential of inhibiting FHL1 as a treatment for glioblastoma.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Eryan Kong ◽  
Sonja Sucic ◽  
Francisco J. Monje ◽  
Sonali N. Reisinger ◽  
Giorgia Savalli ◽  
...  

Abstract Experimental evidence suggests a role for the immune system in the pathophysiology of depression. A specific involvement of the proinflammatory cytokine interleukin 6 (IL6) in both, patients suffering from the disease and pertinent animal models, has been proposed. However, it is not clear how IL6 impinges on neurotransmission and thus contributes to depression. Here we tested the hypothesis that IL6-induced modulation of serotonergic neurotransmission through the STAT3 signaling pathway contributes to the role of IL6 in depression. Addition of IL6 to JAR cells, endogenously expressing SERT, reduced SERT activity and downregulated SERT mRNA and protein levels. Similarly, SERT expression was reduced upon IL6 treatment in the mouse hippocampus. Conversely, hippocampal tissue of IL6-KO mice contained elevated levels of SERT and IL6-KO mice displayed a reduction in depression-like behavior and blunted response to acute antidepressant treatment. STAT3 IL6-dependently associated with the SERT promoter and inhibition of STAT3 blocked the effect of IL6 in-vitro and modulated depression-like behavior in-vivo. These observations demonstrate that IL6 directly controls SERT levels and consequently serotonin reuptake and identify STAT3-dependent regulation of SERT as conceivable neurobiological substrate for the involvement of IL6 in depression.


2020 ◽  
Author(s):  
Jingang Ai ◽  
Guolin Tan ◽  
Tiansheng Wang ◽  
Wei Li ◽  
Ru Gao ◽  
...  

Aim: To investigate the role of LINC01160 in nasopharyngeal carcinoma (NPC). Materials & methods: Using NPC cells CNE-2 and HNE-2 in vitro, we performed quantitative PCR to determine mRNA expression and western blotting to determine protein expression. CCK-8, transwell, flow cytometry and wound healing assays were done to examine the function of LINC01160 and STAT1. Chromatin immunoprecipitation PCR (ChIP-PCR) confirmed that STAT1 combines with the LINC01160 promoter region. Xenograft experiments were used to verify the role of STAT1 and LINC01160 in vivo. Results: LINC01160 is upregulated in NPC and can promote a malignant cell phenotype. STAT1 is a transcription factor of LINC01160 and can promote a malignant cell phenotype through upregulating LINC01160 expression. Conclusion: STAT1 can promote a malignant cell phenotype by upregulating LINC01160.


Sign in / Sign up

Export Citation Format

Share Document