scholarly journals Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia

Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4797-4808 ◽  
Author(s):  
Michael H. Tomasson ◽  
Zhifu Xiang ◽  
Richard Walgren ◽  
Yu Zhao ◽  
Yumi Kasai ◽  
...  

Abstract Activating mutations in tyrosine kinase (TK) genes (eg, FLT3 and KIT) are found in more than 30% of patients with de novo acute myeloid leukemia (AML); many groups have speculated that mutations in other TK genes may be present in the remaining 70%. We performed high-throughput resequencing of the kinase domains of 26 TK genes (11 receptor TK; 15 cytoplasmic TK) expressed in most AML patients using genomic DNA from the bone marrow (tumor) and matched skin biopsy samples (“germline”) from 94 patients with de novo AML; sequence variants were validated in an additional 94 AML tumor samples (14.3 million base pairs of sequence were obtained and analyzed). We identified known somatic mutations in FLT3, KIT, and JAK2 TK genes at the expected frequencies and found 4 novel somatic mutations, JAK1V623A, JAK1T478S, DDR1A803V, and NTRK1S677N, once each in 4 respective patients of 188 tested. We also identified novel germline sequence changes encoding amino acid substitutions (ie, nonsynonymous changes) in 14 TK genes, including TYK2, which had the largest number of nonsynonymous sequence variants (11 total detected). Additional studies will be required to define the roles that these somatic and germline TK gene variants play in AML pathogenesis.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 823-823
Author(s):  
Zhifu Xiang ◽  
Yu Zhao ◽  
Vesselin Mitaksov ◽  
Daved H. Fremont ◽  
Yumi Kasai ◽  
...  

Abstract Activating mutations in receptor tyrosine kinase (RTK) genes (including FLT3 and KIT) occur in more than 30% of newly diagnosed patients with acute myeloid leukemia (AML); we and others have speculated that mutations in other TK genes may be present in the remaining 70%. We therefore examined the expression of all annotated RTK and cytoplasmic tyrosine kinase (CTK) genes to prioritize these genes for sequencing. We performed high-throughput re-sequencing of the kinase domains of 24 TK genes (9 RTK and 15 CTK) using amplified genomic DNA from the bone marrow (tumor) and matched skin biopsy samples (“germline”) from 94 patients with de novo AML, and validated positive findings in an additional 94 AML tumor samples (14.4 million base pairs of double-stranded coverage). In addition to previously reported somatic mutations in FLT3, KIT, and JAK2 (which occurred at expected frequencies), we found novel somatic mutations in four patients in JAK1, NTRK1 and DDR1. Unexpectedly, we also identified novel non-synonymous germline sequence changes in 14 genes, including TYK2. We examined frequencies of known polymorphisms in our patients versus controls. We determined that the previously reported JAK3P132T allele is a germline variant that occurs in 19% of normal African Americans. Even when controlling for race, the TYK2G363S allele was found significantly less frequently in AML samples (12/376 alleles, 3.2%) compared to 147 normal controls (27/294 alleles, 9.2%, p=0.0013). Notably, there was loss of heterozygosity (LOH) at TYK2 in 2 patients. Additional population based studies and biologic validation will be required to define the significance of these sequence changes for AML pathogenesis. Lastly, we compared the expression of RTK and CTK genes in AML samples (n=92) to highly enriched normal human CD34+, promyelocyte, or polymorphonuclear neutrophil populations (n=5 each). We found several RTKs (FLT3, KIT, LTK) and CTKs (FYN, LCK, ITK, HCK and FGR) were tightly regulated in normal hematopoietic development but were dysregulated in many AML samples. Taken together, our data suggest that RTK or CTK mutations are not required for AML development but may be disease modifying events. Our data also suggest that germline variants and dysregulated expression of RTK and CTK genes may play significant roles AML pathogenesis.


Blood ◽  
2015 ◽  
Vol 125 (9) ◽  
pp. 1367-1376 ◽  
Author(s):  
R. Coleman Lindsley ◽  
Brenton G. Mar ◽  
Emanuele Mazzola ◽  
Peter V. Grauman ◽  
Sarah Shareef ◽  
...  

Key Points The presence of a mutation in SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, or STAG2 is highly specific for secondary AML. Secondary-type mutations define an s-AML–like disease within t-AML and elderly de novo AML that underlies clinical heterogeneity.


Blood ◽  
2004 ◽  
Vol 103 (10) ◽  
pp. 3669-3676 ◽  
Author(s):  
B. Douglas Smith ◽  
Mark Levis ◽  
Miloslav Beran ◽  
Francis Giles ◽  
Hagop Kantarjian ◽  
...  

Abstract Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in approximately 30% of patients with de novo acute myeloid leukemia (AML) and are associated with lower cure rates from standard chemotherapy-based treatment. Targeting the mutation by inhibiting the tyrosine kinase activity of FLT3 is cytotoxic to cell lines and primary AML cells harboring FLT3 mutations. Successful FLT3 inhibition can also improve survival in mouse models of FLT3-activated leukemia. CEP-701 is an orally available, novel, receptor tyrosine kinase inhibitor that selectively inhibits FLT3 autophosphorylation. We undertook a phase 1/2 trial to determine the in vivo hematologic effects of single-agent CEP-701 as salvage treatment for patients with refractory, relapsed, or poor-risk AML expressing FLT3-activating mutations. Fourteen heavily pretreated AML patients were treated with CEP-701 at an initial dose of 60 mg orally twice daily. CEP-701–related toxicities were minimal. Five patients had clinical evidence of biologic activity and measurable clinical response, including significant reductions in bone marrow and peripheral blood blasts. Laboratory data confirmed that clinical responses correlated with sustained FLT3 inhibition to CEP-701. Our results show that FLT3 inhibition is associated with clinical activity in AML patients harboring FLT3-activating mutations and indicate that CEP-701 holds promise as a novel, molecularly targeted therapy for this disease.


Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4809-4812 ◽  
Author(s):  
Zhifu Xiang ◽  
Yu Zhao ◽  
Vesselin Mitaksov ◽  
Daved H. Fremont ◽  
Yumi Kasai ◽  
...  

Abstract Somatic mutations in JAK2 are frequently found in myeloproliferative diseases, and gain-of-function JAK3 alleles have been identified in M7 acute myeloid leukemia (AML), but a role for JAK1 in AML has not been described. We screened the entire coding region of JAK1 by total exonic resequencing of bone marrow DNA samples from 94 patients with de novo AML. We identified 2 novel somatic mutations in highly conserved residues of the JAK1 gene (T478S, V623A), in 2 separate patients and confirmed these by resequencing germ line DNA samples from the same patients. Overexpression of mutant JAK1 did not transform primary murine cells in standard assays, but compared with wild-type JAK1, JAK1T478S, and JAK1V623A expression was associated with increased STAT1 activation in response to type I interferon and activation of multiple downstream signaling pathways. This is the first report to demonstrate somatic JAK1 mutations in AML and suggests that JAK1 mutations may function as disease-modifying mutations in AML pathogenesis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 784-784
Author(s):  
Giridharan Ramsingh ◽  
Dong Shen ◽  
Tamara Lamprecht ◽  
Sharon Heath ◽  
Robert S. Fulton ◽  
...  

Abstract Abstract 784 Whole Genome Sequencing of Therapy-Related Acute Myeloid Leukemia Giridharan Ramsingh, Dong Shen, Tamara L. Lamprecht, Sharon E. Heath, Robert S. Fulton, Elaine Mardis, Li Ding, Peter Westervelt, John Welch, Matthew J. Walter, Timothy A. Graubert, John F. DiPersio, Timothy J. Ley, Richard K. Wilson, and Daniel C. Link. Therapy related therapy-related acute myeloid leukemia (t-AML) accounts for 10–20% of all new cases of AML, and its incidence is rising. A fundamental difference in the pathogenesis of de novo AML and t-AML is prior treatment with chemotherapy and/or radiotherapy. The exposure of hematopoietic stem/progenitors cells (HSPCs) to this genotoxic stress is hypothesized to alter the number and spectrum of mutations that arise in t-AML. Moreover, the genotoxic stress may exert selective pressure to expand those HSPC clones that are inherently resistant to chemotherapy, a common feature in t-AML. To test these hypotheses, we sequenced the genomes of 23 cases of t-AML and compared them to the genomes of 24 cases of de novo AML, which we recently reported (Welch et al., Cell, July 2012). We choose to focus our initial studies on the subset of t-AML with normal cytogenetics or simple balanced translocations. Specifically, MLL gene rearrangements were observed in 22% of cases, other balanced translocations in 22%, trisomy 8 in 22%, normal karyotype in 31%, and a complex karyotype in a single case. All patients had received prior alkylator chemotherapy (62%), topoisomerase inhibitor chemotherapy (65%), or radiotherapy (77%). To identify somatic mutations, whole genome sequencing was performed on leukemic bone marrow (average 65% blasts) and skin (normal) DNA. Average haploid coverage was 37.5X and 34.7X for the leukemia and skin genomes, respectively. All somatic mutations were verified using patient-specific custom NimbleGen capture arrays, followed by Illumina sequencing. Although the total number of somatic single nucleotide variants in older patients (>50 years) with t-AML was similar to that observed in de novo AML (484 ± 68 vs. 506 ± 45, respectively), significantly more mutations were present in younger (≤ 50 years) patients with t-AML (743 ± 228) compared with de novo AML (336 ± 179, P=0.04). Exposure to chemotherapy is associated with an increased rate of transversions in relapsed AML (Ding et al., Nature 2012). However, the percentage of somatic mutations that were transversions in t-AML (35.8 ± 1.91%) was similar to that seen in de novo AML (33.5 ± 0.93%), regardless of age. In the 23 t-AML genomes, we identified recurring mutations (present in at least 2 cases) in 20 genes. Many of these mutations were also observed in de novo AML genomes (Figure 1). The most commonly mutated gene in t-AML was TET2, which was mutated in 35% of cases. Of interest, missense mutations of the ABC transporter gene ABCG2 were significantly enriched in t-AML (2/23, 8.7%) compared with de novo AML (0 in 200 cases, P=0.01). ABCG2 (also known as breast cancer resistance protein, BCRP) has been implicated in chemotherapy resistance. ABCG2 is expressed at high levels in hematopoietic stem cells, where it is known to function as a key drug transporter. Studies are underway to define the frequency of ABCG2 mutations (and other ABC transporter genes) in a larger cohort of t-AML, including cases with alterations in chromosome 5 or 7 or with complex cytogenetic abnormalities. In summary, in younger patients with t-AML, the mutational burden is higher than that of de novo AML patients, possibly reflecting prior exposure to chemoradiotherapy, though no increase in transversions was observed. Mutations of ABCG2 may contribute to chemotherapy resistance in a subset of t-AML. Figure 1. Recurring mutations in t-AML (n = 23) compared with de novo AML (n = 24). Figure 1. Recurring mutations in t-AML (n = 23) compared with de novo AML (n = 24). Disclosures: Ley: Washington University: Patents & Royalties.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2527-2534 ◽  
Author(s):  
Christian Récher ◽  
Odile Beyne-Rauzy ◽  
Cécile Demur ◽  
Gaëtan Chicanne ◽  
Cédric Dos Santos ◽  
...  

AbstractThe mammalian target of rapamycin (mTOR) is a key regulator of growth and survival in many cell types. Its constitutive activation has been involved in the pathogenesis of various cancers. In this study, we show that mTOR inhibition by rapamycin strongly inhibits the growth of the most immature acute myeloid leukemia (AML) cell lines through blockade in G0/G1 phase of the cell cycle. Accordingly, 2 downstream effectors of mTOR, 4E-BP1 and p70S6K, are phosphorylated in a rapamycin-sensitive manner in a series of 23 AML cases. Interestingly, the mTOR inhibitor markedly impairs the clonogenic properties of fresh AML cells while sparing normal hematopoietic progenitors. Moreover, rapamycin induces significant clinical responses in 4 of 9 patients with either refractory/relapsed de novo AML or secondary AML. Overall, our data strongly suggest that mTOR is aberrantly regulated in most AML cells and that rapamycin and analogs, by targeting the clonogenic compartment of the leukemic clone, may be used as new compounds in AML therapy.


2020 ◽  
Vol 38 (30) ◽  
pp. 3506-3517 ◽  
Author(s):  
Chong Chyn Chua ◽  
Andrew W. Roberts ◽  
John Reynolds ◽  
Chun Yew Fong ◽  
Stephen B. Ting ◽  
...  

PURPOSE The B-cell lymphoma 2 (BCL-2) inhibitor venetoclax has an emerging role in acute myeloid leukemia (AML), with promising response rates in combination with hypomethylating agents or low-dose cytarabine in older patients. The tolerability and efficacy of venetoclax in combination with intensive chemotherapy in AML is unknown. PATIENTS AND METHODS Patients with AML who were ≥ 65 years (≥ 60 years if monosomal karyotype) and fit for intensive chemotherapy were allocated to venetoclax dose-escalation cohorts (range, 50-600 mg). Venetoclax was administered orally for 14 days each cycle. During induction, a 7-day prephase/dose ramp-up (days −6 to 0) was followed by an additional 7 days of venetoclax combined with infusional cytarabine 100 mg/m2 on days 1-5 and idarubicin 12 mg/m2 intravenously on days 2-3 (ie, 5 + 2). Consolidation (4 cycles) included 14 days of venetoclax (days −6 to 7) combined with cytarabine (days 1-2) and idarubicin (day 1). Maintenance venetoclax was permitted (7 cycles). The primary objective was to assess the optimal dose schedule of venetoclax with 5 + 2. RESULTS Fifty-one patients with a median age of 72 years (range, 63-80 years) were included. The maximum tolerated dose was not reached with venetoclax 600 mg/day. The main grade ≥ 3 nonhematologic toxicities during induction were febrile neutropenia (55%) and sepsis (35%). In contrast to induction, platelet recovery was notably delayed during consolidation cycles. The overall response rate (complete remission [CR]/CR with incomplete count recovery) was 72%; it was 97% in de novo AML and was 43% in secondary AML. During the venetoclax prephase, marrow blast reductions (≥ 50%) were noted in NPM1-, IDH2-, and SRSF2-mutant AML. CONCLUSION Venetoclax combined with 5 + 2 induction chemotherapy was safe and tolerable in fit older patients with AML. Although the optimal postremission therapy remains to be determined, the high remission rate in de novo AML warrants additional investigation (ANZ Clinical Trial Registry No. ACTRN12616000445471).


1997 ◽  
Vol 15 (6) ◽  
pp. 2262-2268 ◽  
Author(s):  
M Wetzler ◽  
M R Baer ◽  
S H Bernstein ◽  
L Blumenson ◽  
C Stewart ◽  
...  

PURPOSE c-mpl, the human homolog of v-mpl, is the receptor for thrombopoietin. Given that c-mpl expression carries an adverse prognosis in myelodysplastic syndrome and given the prognostic significance of expression of other growth factor receptors in other diseases, we attempted to determine whether c-mp/mRNA expression is a prognostic factor in acute myeloid leukemia (AML). PATIENTS AND METHODS We analyzed bone marrow samples from 45 newly diagnosed AML patients by reverse-transcription polymerase chain reaction. RESULTS Samples from 27 patients (60%) expressed c-mpl mRNA (c-mpl+); their clinical and laboratory features were compared with those of the 18 patients without detectable levels of c-mpl(c-mpl-). No significant differences in age, sex, leukocyte count, French-American-British subtype, or karyotype group were found. c-mpl+ patients more commonly had secondary AML (41% v 11%; P = .046) and more commonly expressed CD34 (67% v 12%; P = .0004). There was no significant difference in complete remission (CR) rate. However, c-mpl+ patients had shorter CR durations (P = .008; median, 6.0 v > 17.0 months). This was true when only de novo AML patients were considered and when controlling for age, cytogenetics, or CD34 expression. There was a trend toward shorter survival in c-mpl+ patients (P = .058; median, 7.8 v 9.0 months). CONCLUSION These data suggest that c-mpl expression is an adverse prognostic factor for treatment outcome in adult AML that must be considered in the analysis of clinical studies using thrombopoietin in AML.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4532-4538 ◽  
Author(s):  
Krzysztof Mrózek ◽  
Kristiina Heinonen ◽  
David Lawrence ◽  
Andrew J. Carroll ◽  
Prasad R.K. Koduru ◽  
...  

Abstract Following reports of childhood acute myeloid leukemia (AML) showing that patients with t(9; 11)(p22; q23) have a better prognosis than those with translocations between 11q23 and other chromosomes, we compared response to therapy and survival of 24 adult de novo AML patients with t(9; 11) with those of 23 patients with other 11q23 translocations [t(11q23)]. Apart from a higher proportion of French-American-British (FAB) M5 subtype in the t(9; 11) group (83% v 43%, P = .006), the patients with t(9; 11) did not differ significantly from patients with t(11q23) in terms of their presenting clinical or hematologic features. Patients with t(9; 11) more frequently had an extra chromosome(s) 8 or 8q as secondary abnormalities (46% v 9%, P = .008). All patients received standard cytarabine and daunorubicin induction therapy, and most of them also received cytarabine-based intensification treatment. Two patients, both with t(9; 11), underwent bone marrow transplantation (BMT) in first complete remission (CR). Nineteen patients (79%) with t(9; 11) and 13 (57%) with t(11q23) achieved a CR (P = .13). The clinical outcome of patients with t(9; 11) was significantly better: the median CR duration was 10.7 versus 8.9 months (P = .02), median event-free survival was 6.2 versus 2.2 months (P = .009), and median survival was 13.2 versus 7.7 months (P = .009). All patients with t(11q23) have died, whereas seven (29%) patients with t(9; 11) remain alive in first CR. Seven of eight patients with t(9; 11) who received postremission regimens with cytarabine at a dose of 100 (four patients) or 400 mg/m2 (2 patients) or who did not receive postremission therapy (2 patients) have relapsed. In contrast, 7 (64%) of 11 patients who received intensive postremission chemotherapy with high-dose cytarabine (at a dose 3 g/m2) (5 patients), or underwent BMT (2 patients) remain in continuous CR. We conclude that the outcome of adults with de novo AML and t(9; 11) is more favorable than that of adults with other 11q23 translocations; this is especially true for t(9; 11) patients who receive intensive postremission therapy.


Blood ◽  
2011 ◽  
Vol 117 (7) ◽  
pp. 2137-2145 ◽  
Author(s):  
Sabine Kayser ◽  
Konstanze Döhner ◽  
Jürgen Krauter ◽  
Claus-Henning Köhne ◽  
Heinz A. Horst ◽  
...  

Abstract To study the characteristics and clinical impact of therapy-related acute myeloid leukemia (t-AML). 200 patients (7.0%) had t-AML and 2653 de novo AML (93%). Patients with t-AML were older (P < .0001) and they had lower white blood counts (P = .003) compared with de novo AML patients; t-AML patients had abnormal cytogenetics more frequently, with overrepresentation of 11q23 translocations as well as adverse cytogenetics, including complex and monosomal karyotypes, and with underrepresentation of intermediate-risk karyotypes (P < .0001); t-AML patients had NPM1 mutations (P < .0001) and FLT3 internal tandem duplications (P = .0005) less frequently. Younger age at diagnosis of primary malignancy and treatment with intercalating agents as well as topoisomerase II inhibitors were associated with shorter latency periods to the occurrence of t-AML. In multivariable analyses, t-AML was an adverse prognostic factor for death in complete remission but not relapse in younger intensively treated patients (P < .0001 and P = .39, respectively), relapse but not death in complete remission in older, less intensively treated patients (P = .02 and P = .22, respectively) and overall survival in younger intensively treated patients (P = .01). In more intensively treated younger adults, treatment-related toxicity had a major negative impact on outcome, possibly reflecting cumulative toxicity of cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document