scholarly journals IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells

Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 346-356 ◽  
Author(s):  
Mark A. Brockman ◽  
Douglas S. Kwon ◽  
Daniel P. Tighe ◽  
David F. Pavlik ◽  
Pamela C. Rosato ◽  
...  

AbstractMurine models indicate that interleukin-10 (IL-10) can suppress viral clearance, and interventional blockade of IL-10 activity has been proposed to enhance immunity in chronic viral infections. Increased IL-10 levels have been observed during HIV infection and IL-10 blockade has been shown to enhance T-cell function in some HIV-infected subjects. However, the categories of individuals in whom the IL-10 pathway is up-regulated are poorly defined, and the cellular sources of IL-10 in these subjects remain to be determined. Here we report that blockade of the IL-10 pathway augmented in vitro proliferative capacity of HIV-specific CD4 and CD8 T cells in individuals with ongoing viral replication. IL-10 blockade also increased cytokine secretion by HIV-specific CD4 T cells. Spontaneous IL-10 expression, measured as either plasma IL-10 protein or IL-10 mRNA in peripheral blood mononuclear cells (PBMCs), correlated positively with viral load and diminished after successful antiretroviral therapy. IL-10 mRNA levels were up-regulated in multiple PBMC subsets in HIV-infected subjects compared with HIV-negative controls, particularly in T, B, and natural killer (NK) cells, whereas monocytes were a major source of IL-10 mRNA in HIV-infected and -uninfected individuals. These data indicate that multiple cell types contribute to IL-10–mediated immune suppression in the presence of uncontrolled HIV viremia.

Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2649-2654 ◽  
Author(s):  
Nicole P. Juffermans ◽  
William A. Paxton ◽  
Pascale E. P. Dekkers ◽  
Annelies Verbon ◽  
Evert de Jonge ◽  
...  

Abstract Concurrent infections in patients with human immunodeficiency virus (HIV) infection stimulate HIV replication. Chemokine receptors CXCR4 and CCR5 can act as HIV coreceptors. The authors hypothesized that concurrent infection increases the HIV load through up-regulation of CXCR4 and CCR5. Using experimental endotoxemia as a model of infection, changes in HIV coreceptor expression were assessed in 8 subjects injected with lipopolysaccharide (LPS, 4 ng/kg). The expression of CXCR4 and CCR5 on CD4+ T cells was increased 2- to 4-fold, 4 to 6 hours after LPS injection. In whole blood in vitro, LPS induced a time- and dose-dependent increase in the expression of CXCR4 and CCR5 on CD4+ T cells. Similar changes were observed after stimulation with cell wall components ofMycobacterium tuberculosis (lipoarabinnomannan) orStaphylococcus aureus (lipoteichoic acid), or with staphylococcal enterotoxin B. LPS increased viral infectivity of CD4-enriched peripheral blood mononuclear cells (PBMCs) with a T-tropic HIV strain. In contrast, M-tropic virus infectivity was reduced, possibly because of elevated levels of the CCR5 ligand cytokines RANTES and MIP-1β. LPS-stimulated up-regulation of CXCR4 and CCR5 in vitro was inhibited by anti-TNF and anti-IFNγ. Incubation with recombinant TNF or IFNγ mimicked the LPS effect. Anti–interleukin 10 (anti–IL-10) reduced CCR5 expression, without influencing CXCR4. In accordance, rIL-10 induced up-regulation of CCR5, but not of CXCR4. Intercurrent infections during HIV infection may up-regulate CXCR4 and CCR5 on CD4+ T cells, at least in part via the action of cytokines. Such infections may favor selectivity of HIV for CD4+ T cells expressing CXCR4.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2649-2654 ◽  
Author(s):  
Nicole P. Juffermans ◽  
William A. Paxton ◽  
Pascale E. P. Dekkers ◽  
Annelies Verbon ◽  
Evert de Jonge ◽  
...  

Concurrent infections in patients with human immunodeficiency virus (HIV) infection stimulate HIV replication. Chemokine receptors CXCR4 and CCR5 can act as HIV coreceptors. The authors hypothesized that concurrent infection increases the HIV load through up-regulation of CXCR4 and CCR5. Using experimental endotoxemia as a model of infection, changes in HIV coreceptor expression were assessed in 8 subjects injected with lipopolysaccharide (LPS, 4 ng/kg). The expression of CXCR4 and CCR5 on CD4+ T cells was increased 2- to 4-fold, 4 to 6 hours after LPS injection. In whole blood in vitro, LPS induced a time- and dose-dependent increase in the expression of CXCR4 and CCR5 on CD4+ T cells. Similar changes were observed after stimulation with cell wall components ofMycobacterium tuberculosis (lipoarabinnomannan) orStaphylococcus aureus (lipoteichoic acid), or with staphylococcal enterotoxin B. LPS increased viral infectivity of CD4-enriched peripheral blood mononuclear cells (PBMCs) with a T-tropic HIV strain. In contrast, M-tropic virus infectivity was reduced, possibly because of elevated levels of the CCR5 ligand cytokines RANTES and MIP-1β. LPS-stimulated up-regulation of CXCR4 and CCR5 in vitro was inhibited by anti-TNF and anti-IFNγ. Incubation with recombinant TNF or IFNγ mimicked the LPS effect. Anti–interleukin 10 (anti–IL-10) reduced CCR5 expression, without influencing CXCR4. In accordance, rIL-10 induced up-regulation of CCR5, but not of CXCR4. Intercurrent infections during HIV infection may up-regulate CXCR4 and CCR5 on CD4+ T cells, at least in part via the action of cytokines. Such infections may favor selectivity of HIV for CD4+ T cells expressing CXCR4.


Blood ◽  
2021 ◽  
Author(s):  
Maissa Mhibik ◽  
Erika M. Gaglione ◽  
David Eik ◽  
Ellen K Kendall ◽  
Amy Blackburn ◽  
...  

Bruton Tyrosine Kinase inhibitors (BTKis) are a preferred treatment for patients with chronic lymphocytic leukemia (CLL). Indefinite therapy with BTKis, while effective, presents clinical challenges. Combination therapy can deepen responses, shorten treatment duration, and possibly prevent or overcome drug resistance. We previously reported on a CD19/CD3 bispecific antibody (bsAb) that recruits autologous T cell cytotoxicity against CLL cells in vitro. Compared to observations with samples from treatment-naïve patients, T cells from patients being treated with ibrutinib expanded more rapidly and exerted superior cytotoxic activity in response to the bsAb. In addition to BTK, ibrutinib also inhibits IL2 inducible T cell Kinase (ITK). In contrast, acalabrutinib, does not inhibit ITK. Whether ITK inhibition contributes to the observed immune effects is unknown. To better understand how BTKis modulate T-cell function and cytotoxic activity, we cultured peripheral blood mononuclear cells (PBMCs) from BTKi-naive, and ibrutinib- or acalabrutinib-treated CLL patients with CD19/CD3 bsAb in vitro. T-cell expansion, activation, differentiation, and cytotoxicity were increased in PBMCs from patients on treatment with either BTKi compared to that observed for BKTi-naïve patients. BTKi therapy transcriptionally downregulated immunosuppressive effectors expressed by CLL cells, including CTLA-4 and CD200. CTLA-4 blockade with ipilimumab in vitro increased the cytotoxic activity of the bsAb in BTKi-naïve but not BTKi-treated PBMCS. Taken together, BTKis enhance bsAb induced cytotoxicity by relieving T cells of immunosuppressive restraints imposed by CLL cells. The benefit of combining bsAb immunotherapy with BTKis needs to be confirmed in clinical trials.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1755-1762 ◽  
Author(s):  
Neil A. Marshall ◽  
Linsey E. Christie ◽  
Laura R. Munro ◽  
Dominic J. Culligan ◽  
Peter W. Johnston ◽  
...  

Abstract Although immunosuppression has long been recognized in Hodgkin lymphoma (HL), the underlying basis for the lack of an effective immune response against the tumor remains unclear. The aim was to test our hypothesis that regulatory T cells dominate involved lymph nodes. The approach was to assay CD4+ T-cell function in HL-infiltrating lymphocytes (HLILs) and paired peripheral blood mononuclear cells (PBMCs) of 24 patients. Strikingly, unlike PBMCs, HLILs were anergic to stimulation with mitogen, primary, or recall antigens, mounting no proliferative responses and only rare T-helper 1 (Th1) or Th2 cytokine responses. Mixing paired HLILs and PBMCs showed the anergic effect was dominant and suppressed PBMC responses. Furthermore, flow cytometry demonstrated that HLILs contained large populations of both interleukin-10 (IL-10)–secreting T-regulatory 1 (Tr1) and CD4+CD25+ regulatory T cells. We found evidence for 3 mechanisms of action implicated in the suppressive functions of regulatory T cells: the inhibition of PBMCs by HLILs was ameliorated by neutralizing IL-10, by preventing cell-to-cell contact, and by blocking anti–cytotoxic T lymphocyte–associated antigen 4 (anti–CTLA-4). Thus, HLILs are highly enriched for regulatory T cells, which induce a profoundly immunosuppressive environment and so provide an explanation for the ineffective immune clearance of Hodgkin-Reed Sternberg cells.


2009 ◽  
Vol 16 (7) ◽  
pp. 1003-1011 ◽  
Author(s):  
Kari R. Lybeck ◽  
Anne K. Storset ◽  
Ingrid Olsen

ABSTRACT The gamma interferon assay is used to identify Mycobacterium avium subsp. paratuberculosis-infected animals. It has been suggested that regulatory mechanisms could influence the sensitivity of the test when it is performed with cells from cattle and that the neutralization of interleukin-10 (IL-10) in vitro would increase the gamma interferon responses. To investigate the regulatory mechanisms affecting the gamma interferon assay with cells from goats, blood was collected from M. avium subsp. paratuberculosis-infected, M. avium subsp. paratuberculosis-exposed, and noninfected goats. Neutralization of IL-10 by a monoclonal antibody resulted in increased levels of gamma interferon production in M. avium subsp. paratuberculosis purified protein derivative (PPDj)-stimulated samples from both infected and exposed goats. However, the levels of gamma interferon release were also increased in unstimulated cells and in PPDj-stimulated cells from some noninfected animals following neutralization. Depletion of putative regulatory CD25high T cells had no clear effect on the number of gamma-interferon-producing cells. The IL-10-producing cells were identified to be mainly CD14+ major histocompatibility complex class II-positive monocytes in both PPDj-stimulated and control cultures and not regulatory T cells. However, possible regulatory CD4+ CD25+ T cells produced IL-10 in response to concanavalin A stimulation. The numbers of CD4+, CD8+, and CD8+ γδT-cell receptor-positive cells producing gamma interferon increased following IL-10 neutralization. These results provide insight into the source and the role of IL-10 in gamma interferon assays with cells from goats and suggest that IL-10 from monocytes can regulate both innate and adaptive gamma interferon production from several cell types. Although IL-10 neutralization increased the sensitivity of the gamma interferon assay, the specificity of the test could be compromised.


2020 ◽  
Author(s):  
Hritika Sharma ◽  
Anjali Bose ◽  
Uma Kumar ◽  
Rahul Pal

AbstractHemoglobin (Hb) has well-documented inflammatory effects and is normally efficiently scavenged; clearance mechanisms can be overwhelmed during conditions of erythrocyte lysis, a condition that may occur in systemic lupus erythematosus. Whether Hb is preferentially inflammatory in lupus and additionally induces autoreactivity against prominent autoantigens was assessed. Peripheral blood mononuclear cells derived from SLE patients secreted higher levels of lupus-associated inflammatory cytokines when incubated with Hb, effects negated by haptoglobin. Hb (more particularly, ferric Hb) triggered the preferential release of lupus-associated cytokines from splenocytes, B cells, CD4 T cells, CD8 T cells and plasmacytoid dendritic cells isolated from aging NZM2410 mice, and also had mitogenic effects on B cells. Ferric Hb activated multiple signaling pathways which were differentially responsible for the generation of specific cytokines; inflammatory signaling also appeared to be cell-context dependent. Pull-downs, followed by mass spectrometry, revealed interactions of Hb with several lupus-associated autoantigens; co-incubation of ferric Hb with apoptotic blebs (structures which contain packaged autoantigens, believed to trigger lupus autoreactivity) revealed synergies (in terms of cytokine release and autoantibody production in vitro) that were also restricted to the lupus genotype. Infusion of ferric Hb into NZM2410 mice led to enhanced release of lupus-associated cytokines, the generation of a spectrum of autoantibodies, and enhanced-onset glomerulosclerosis. Given that the biased recognition of ferric Hb in a lupus milieu, in concert with lupus-associated autoantigens, elicits the generation of inflammatory cytokines from multiple immune cell types and stimulates the generation of potentially pathogenic autoantibodies, neutralization of Hb could have beneficial effects.


Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 707-714 ◽  
Author(s):  
RL Edwards ◽  
D Perla

Abstract Human monocytes generate the procoagulant tissue factor (MTF) following exposure to a variety of immune stimuli in vitro. The generation of MTF is modified by T cells, lymphokines, and immunoregulatory lipoproteins, and recent studies have shown that MTF can be activated in an immune- specific manner following exposure to antigen. We have examined the role of serum factors in the regulation of MTF generation. Low concentrations (less than 1%) of heat-inactivated normal human serum greatly enhanced MTF generation in cultures of normal peripheral blood mononuclear cells. The stimulatory effect was observed in cultures of both unstimulated cells and cells exposed to bacterial lipopolysaccharide. Stimulation was not observed at high serum concentrations (greater than 10%) and could not be explained by endotoxin contamination or activation of the assay system. Stimulatory activity was present in plasma and BaSO4-adsorbed plasma as well as autologous and allogeneic serum, was not abolished by removal of serum lipoproteins, and did not require the presence of T cells for its expression. Sera from 28 different normal volunteers were screened for stimulatory activity and demonstrated a wide variation in potency. These results suggest that a potent factor is present in sera that enhances the expression of MTF activity in vitro. This factor is distinct from previously described lipoprotein regulators and may play a role in the initiation of coagulation in both normal hemostasis and pathologic states.


2008 ◽  
Vol 76 (10) ◽  
pp. 4538-4545 ◽  
Author(s):  
William W. Kwok ◽  
Junbao Yang ◽  
Eddie James ◽  
John Bui ◽  
Laurie Huston ◽  
...  

ABSTRACT Cellular immune responses against protective antigen (PA) of Bacillus anthracis in subjects that received the anthrax vaccine adsorbed (AVA) vaccine were examined. Multiple CD4+ T-cell epitopes within PA were identified by using tetramer-guided epitope mapping. PA-reactive CD4+ T cells with a CD45RA− phenotype were also detected by direct ex vivo staining of peripheral blood mononuclear cells (PBMC) with PA-specific tetramers. Surprisingly, PA-specific T cells were also detected in PBMC of nonvaccinees after a single cycle of in vitro PA stimulation. However, PA-reactive CD4+ T cells in nonvaccinees occurred at lower frequencies than those in vaccinees. The majority of PA-reactive T cells from nonvaccinees were CD45RA+ and exhibited a Th0/Th1 cytokine profile. In contrast, phenotyping and cytokine profile analyses of PA-reactive CD4+ T cells from vaccinees indicated that vaccination leads to commitment of PA-reactive T cells to a Th2 lineage, including generation of PA-specific, pre-Th2 central memory T cells. These results demonstrate that the current AVA vaccine is effective in skewing the development of PA CD4+ T cells to the Th2 lineage. The data also demonstrated the feasibility of using class II tetramers to analyze CD4+ cell responses and lineage development after vaccination.


Sign in / Sign up

Export Citation Format

Share Document