scholarly journals The Anthrax Vaccine Adsorbed Vaccine Generates Protective Antigen (PA)-Specific CD4+ T Cells with a Phenotype Distinct from That of Naïve PA T Cells

2008 ◽  
Vol 76 (10) ◽  
pp. 4538-4545 ◽  
Author(s):  
William W. Kwok ◽  
Junbao Yang ◽  
Eddie James ◽  
John Bui ◽  
Laurie Huston ◽  
...  

ABSTRACT Cellular immune responses against protective antigen (PA) of Bacillus anthracis in subjects that received the anthrax vaccine adsorbed (AVA) vaccine were examined. Multiple CD4+ T-cell epitopes within PA were identified by using tetramer-guided epitope mapping. PA-reactive CD4+ T cells with a CD45RA− phenotype were also detected by direct ex vivo staining of peripheral blood mononuclear cells (PBMC) with PA-specific tetramers. Surprisingly, PA-specific T cells were also detected in PBMC of nonvaccinees after a single cycle of in vitro PA stimulation. However, PA-reactive CD4+ T cells in nonvaccinees occurred at lower frequencies than those in vaccinees. The majority of PA-reactive T cells from nonvaccinees were CD45RA+ and exhibited a Th0/Th1 cytokine profile. In contrast, phenotyping and cytokine profile analyses of PA-reactive CD4+ T cells from vaccinees indicated that vaccination leads to commitment of PA-reactive T cells to a Th2 lineage, including generation of PA-specific, pre-Th2 central memory T cells. These results demonstrate that the current AVA vaccine is effective in skewing the development of PA CD4+ T cells to the Th2 lineage. The data also demonstrated the feasibility of using class II tetramers to analyze CD4+ cell responses and lineage development after vaccination.

2019 ◽  
Vol 20 (5) ◽  
pp. 1139 ◽  
Author(s):  
Tsui Mao ◽  
Carol Miao ◽  
Yi Liao ◽  
Ying Chen ◽  
Chia Yeh ◽  
...  

γδ-T-cells have attracted attention because of their potent cytotoxicity towards tumors. Most γδ-T-cells become activated via a major histocompatibility complex (MHC)-independent pathway by the interaction of their receptor, Natural Killer Group 2 Member D (NKG2D) with the tumor-specific NKG2D ligands, including MHC class I-related chain A/B (MICA/B) and UL16-binding proteins (ULBPs), to kill tumor cells. However, despite their potent antitumor effects, the treatment protocols specifically targeting ovarian tumors require further improvements. Ovarian cancer is one of the most lethal and challenging female malignancies worldwide because of delayed diagnoses and resistance to traditional chemotherapy. In this study, we successfully enriched and expanded γδ-T-cells up to ~78% from peripheral blood mononuclear cells (PBMCs) with mostly the Vγ9Vδ2-T-cell subtype in the circulation. We showed that expanded γδ-T-cells alone exerted significant cytotoxic activities towards specific epithelial-type OVCAR3 and HTB75 cells, whereas the combination of γδ-T cells and pamidronate (PAM), a kind of aminobisphosphonates (NBPs), showed significantly enhanced cytotoxic activities towards all types of ovarian cancer cells in vitro. Furthermore, in tumor xenografts of immunodeficient NSG mice, γδ-T-cells not only suppressed tumor growth but also completely eradicated preexisting tumors with an initial size of ~5 mm. Thus, we concluded that γδ-T-cells alone possess dramatic cytotoxic activities towards epithelial ovarian cancers both in vitro and in vivo. These results strongly support the potential of clinical immunotherapeutic application of γδ-T-cells to treat this serious female malignancy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5119-5119
Author(s):  
Annie Levesque ◽  
Ann-Louise Savard ◽  
Denis-Claude Roy ◽  
Francine Foss ◽  
Christian Scotto

Abstract Although the risk of graft versus host disease (GvHD) can be reduced by improved donor-recipient matching and by the depletion of T cells before transplantation, GvHD still develops in 30–70% of allogeneic hematopoietic stem cell transplantation (HSCT) patients. The chronic phase of the disease (cGvHD), for which the pathogenesis is similar to autoimmune diseases, involves profound immune dysregulation leading to both immunodeficiency and autoimmunity. Standard therapies for cGvHD such as corticosteroids and immunosuppressants are associated with high toxicity and have demonstrated limited efficacy in patients with extensive disease. Extracorporeal photopheresis (ECP) has been shown by others in the clinic as a non-aggressive and beneficial alternative treatment for cGvHD, inducing Th1/Th2 immunomodulation that restores immunological tolerance. Celmed has developed an alternative approach to eliminate immunoreactive T cells using the Theralux™ photodynamic cell therapy (PDT) system based on the use of the rhodamine-123 derivative TH9402 illuminated ex vivo with a visible light source (λ =514nm). It has been suggested that the apoptotic cells, when returned to the patient, may be able to modulate the immune system as seen with other ECP methods. We aimed to evaluate in vivo and in vitro the possibility of also using the Theralux™ system in the ECP setting. A preliminary mouse model suggested that splenic T cells pre-treated with the Theralux™ system were able to induce an improvement of overall survival (p<0.05) in mice with acute GvHD. Additionally, we developed a simplified PDT process and conducted a series of experiments with peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers. These studies have shown that the intra- and inter-donor variability in TH9402 incorporation are very low (~5% and 10%, respectively). A dose-effect study has shown a relationship of the PDT conditions with the levels of cell death, allowing significant control of the level of apoptosis induced. Phenotypic analyses have shown that this process results in an increase of AnnexinV positive cells as well as a decrease in the absolute number of CD3+ cells, CD19+/CD20+ cells and CD14+ cells and an increase in CD11c+ cells. This would suggest that apoptosis could be induced in both autoreactive T and B cells which could potentially stimulate an immune response against them. Moreover, the increase in CD11c+ cells combined with the decrease in CD14+ cells could reflect the maturation of macrophages into dendritic cells that are very potent antigen presenting cells. The mechanism by which these specific PDT conditions induce cell death is still under investigation but preliminary studies have shown that the cell death in unselected resting PBMCs may be caspase-independent. Finally, the evaluation of the effect of PDT on samples from cGvHD patients also demonstrated the capacity of this treatment strategy to induce apoptosis in these cells. Based on these data, we intend to begin a pilot clinical study evaluating two controlled PDT conditions inducing different levels of apoptosis in order to assess the safety and biological effect of the Theralux™ ECP system to treat patients with cGvHD.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 275-281 ◽  
Author(s):  
Christophe Nicot ◽  
Renaud Mahieux ◽  
Shigeki Takemoto ◽  
Genoveffa Franchini

Human T lymphotropic virus type I (HTLV-I) is the etiological agent of adult T-cell lymphocytic leukemia (ATLL), whereas HTLV-II has not been associated with hematopoietic malignancies. The control of apoptotic pathways has emerged as a critical step in the development of many cancer types. As a result, the underlying mechanism of long-term survival of HTLV-I and HTLV-II was studied in infected T cells in vitro and in ex vivo ATLL samples. Results indicate that HTLV-I– and HTLV-II–infected T cells in vitro express high levels of the antiapoptotic protein Bcl compared with other human leukemic T cell lines or uninfected peripheral blood mononuclear cells. The levels of proapoptotic proteins Bax, BAD, and Bak were not significantly altered. HTLV-I and HTLV-II viral transactivators, Tax1 and Tax2, are known to increase expression of cellular genes. These proteins were tested for increased transcription from the human Bcl2 and Bcl-XL promoters. Whereas no effect was observed on the Bcl2 promoter, both Tax1 and Tax2 increased transcription of the Bcl-XL promoter in T cells, although Tax1 appeared to be more efficient than Tax2. The biological significance of these observations was validated by the finding of an increased expression of Bcl-XL in ex vivo ATLL cells, especially from patients unresponsive to various chemotherapy regimens. Altogether, these data suggest that overexpression of Bcl-XL in vivomay be in part responsible for the resistance of ATLL cells to chemotherapy. In addition, inefficient activation of the Bcl-XL promoter by Tax2 may result in a shorter survival time of HTLV-II–infected cells in vivo and a diminished risk of leukemia development.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1300
Author(s):  
Jose Mateus ◽  
Alba Grifoni ◽  
Hannah Voic ◽  
Michael A. Angelo ◽  
Elizabeth Phillips ◽  
...  

Yellow fever virus (YFV) is a mosquito-borne member of the genus flavivirus, including other important human-pathogenic viruses, such as dengue, Japanese encephalitis, and Zika. Herein, we report identifying 129 YFV Class II epitopes in donors vaccinated with the live attenuated YFV vaccine (YFV-17D). A total of 1156 peptides predicted to bind 17 different common HLA-DRB1 allelic variants were tested using IFNγ ELISPOT assays in vitro re-stimulated peripheral blood mononuclear cells from twenty-six vaccinees. Overall, we detected responses against 215 YFV epitopes. We found that the capsid and envelope proteins, as well as the non-structural (NS) proteins NS3 and NS5, were the most targeted proteins by CD4+ T cells from YF-VAX vaccinated donors. In addition, we designed and validated by flow cytometry a CD4+ mega pool (MP) composed of structural and non-structural epitopes in an independent cohort of vaccinated donors. Overall, this study provides a comprehensive prediction and validation of YFV epitopes in a cohort of YF-17D vaccinated individuals. With the design of a CD4 epitope MP, we further provide a useful tool to detect ex vivo responses of YFV-specific CD4 T cells in small sample volumes.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 275-281 ◽  
Author(s):  
Christophe Nicot ◽  
Renaud Mahieux ◽  
Shigeki Takemoto ◽  
Genoveffa Franchini

Abstract Human T lymphotropic virus type I (HTLV-I) is the etiological agent of adult T-cell lymphocytic leukemia (ATLL), whereas HTLV-II has not been associated with hematopoietic malignancies. The control of apoptotic pathways has emerged as a critical step in the development of many cancer types. As a result, the underlying mechanism of long-term survival of HTLV-I and HTLV-II was studied in infected T cells in vitro and in ex vivo ATLL samples. Results indicate that HTLV-I– and HTLV-II–infected T cells in vitro express high levels of the antiapoptotic protein Bcl compared with other human leukemic T cell lines or uninfected peripheral blood mononuclear cells. The levels of proapoptotic proteins Bax, BAD, and Bak were not significantly altered. HTLV-I and HTLV-II viral transactivators, Tax1 and Tax2, are known to increase expression of cellular genes. These proteins were tested for increased transcription from the human Bcl2 and Bcl-XL promoters. Whereas no effect was observed on the Bcl2 promoter, both Tax1 and Tax2 increased transcription of the Bcl-XL promoter in T cells, although Tax1 appeared to be more efficient than Tax2. The biological significance of these observations was validated by the finding of an increased expression of Bcl-XL in ex vivo ATLL cells, especially from patients unresponsive to various chemotherapy regimens. Altogether, these data suggest that overexpression of Bcl-XL in vivomay be in part responsible for the resistance of ATLL cells to chemotherapy. In addition, inefficient activation of the Bcl-XL promoter by Tax2 may result in a shorter survival time of HTLV-II–infected cells in vivo and a diminished risk of leukemia development.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
María Belén Vecchione ◽  
Natalia Laufer ◽  
Omar Sued ◽  
Marcelo Corti ◽  
Horacio Salomon ◽  
...  

Abstract Background Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), affecting approximately one third of the world’s population. Development of an adequate immune response will determine disease progression or progress to chronic infection. Risk of developing TB among human immunodeficiency virus (HIV)-coinfected patients (HIV-TB) is 20–30 times higher than those without HIV infection, and a synergistic interplay between these two pathogens accelerates the decline in immunological functions. TB treatment in HIV-TB coinfected persons is challenging and it has a prolonged duration, mainly due to the immune system failure to provide an adequate support for the therapy. Therefore, we aimed to study the role of the hormone 7-oxo-dehydroepiandrosterone (7-OD) as a modulator of anti-tuberculosis immune responses in the context of HIV-TB coinfection. Methods A cross-sectional study was conducted among HIV-TB patients and healthy donors (HD). We characterized the ex vivo phenotype of CD4 + T cells and also evaluated in vitro antigen-specific responses by Mtb stimulation of peripheral blood mononuclear cells (PBMCs) in the presence or absence of 7-OD. We assessed lymphoproliferative activity, cytokine production and master transcription factor profiles. Results Our results show that HIV-TB patients were not able to generate successful anti-tubercular responses in vitro compared to HD, as reduced IFN-γ/IL-10 and IFN-γ/IL-17A ratios were observed. Interestingly, treatment with 7-OD enhanced Th1 responses by increasing Mtb-induced proliferation and the production of IFN-γ and TNF-α over IL-10 levels. Additionally, in vitro Mtb stimulation augmented the frequency of cells with a regulatory phenotype, while 7-OD reduced the proportion of these subsets and induced an increase in CD4 + T-bet+ (Th1) subpopulation, which is associated with clinical data linked to an improved disease outcome. Conclusions We conclude that 7-OD modifies the cytokine balance and the phenotype of CD4 + T cells towards a more favorable profile for mycobacteria control. These results provide new data to delineate novel treatment approaches as co-adjuvant for the treatment of TB.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Laia Bosch-Camós ◽  
Elisabet López ◽  
María Jesús Navas ◽  
Sonia Pina-Pedrero ◽  
Francesc Accensi ◽  
...  

The development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimulation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens. Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs. Identification of the same ASFV determinants by means of such different approaches reinforce the results presented here.


Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 707-714 ◽  
Author(s):  
RL Edwards ◽  
D Perla

Abstract Human monocytes generate the procoagulant tissue factor (MTF) following exposure to a variety of immune stimuli in vitro. The generation of MTF is modified by T cells, lymphokines, and immunoregulatory lipoproteins, and recent studies have shown that MTF can be activated in an immune- specific manner following exposure to antigen. We have examined the role of serum factors in the regulation of MTF generation. Low concentrations (less than 1%) of heat-inactivated normal human serum greatly enhanced MTF generation in cultures of normal peripheral blood mononuclear cells. The stimulatory effect was observed in cultures of both unstimulated cells and cells exposed to bacterial lipopolysaccharide. Stimulation was not observed at high serum concentrations (greater than 10%) and could not be explained by endotoxin contamination or activation of the assay system. Stimulatory activity was present in plasma and BaSO4-adsorbed plasma as well as autologous and allogeneic serum, was not abolished by removal of serum lipoproteins, and did not require the presence of T cells for its expression. Sera from 28 different normal volunteers were screened for stimulatory activity and demonstrated a wide variation in potency. These results suggest that a potent factor is present in sera that enhances the expression of MTF activity in vitro. This factor is distinct from previously described lipoprotein regulators and may play a role in the initiation of coagulation in both normal hemostasis and pathologic states.


Author(s):  
jia liu ◽  
Xuecheng Yang ◽  
Hua Wang ◽  
Ziwei Li ◽  
Hui Deng ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects millions of people and killed hundred-thousands of individuals. While acute and intermediate interactions between SARS-CoV-2 and the immune system have been studied extensively, long-term impacts on the cellular immune system remained to be analyzed. Here, we comprehensively characterized immunological changes in peripheral blood mononuclear cells in 49 COVID-19 convalescent individuals (CI) in comparison to 27 matched SARS-CoV-2 unexposed individuals (UI). Despite recovery from the disease for more than 2 months, CI showed significant decreases in frequencies of invariant NKT and NKT-like cells compared to UI. Concomitant with the decrease in NKT-like cells, an increase in the percentage of Annexin V and 7-AAD double positive NKT-like cells was detected, suggesting that the reduction in NKT-like cells results from cell death months after recovery. Significant increases in regulatory T cell frequencies, TIM-3 expression on CD4 and CD8 T cells, as well as PD-L1 expression on B cells were also observed in CI, while the cytotoxic potential of T cells and NKT-like cells, defined by GzmB expression, was significantly diminished. However, both CD4 and CD8 T cells of CI showed increased Ki67 expression and were fully capable to proliferate and produce effector cytokines upon TCR stimulation. Collectively, we provide the first comprehensive characterization of immune signatures in patients recovering from SARS-CoV-2 infection, suggesting that the cellular immune system of COVID-19 patients is still under a sustained influence even months after the recovery from disease.


Sign in / Sign up

Export Citation Format

Share Document