scholarly journals Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies

Blood ◽  
2009 ◽  
Vol 114 (13) ◽  
pp. 2764-2773 ◽  
Author(s):  
Tamer E. Fandy ◽  
James G. Herman ◽  
Patrick Kerns ◽  
Anchalee Jiemjit ◽  
Elizabeth A. Sugar ◽  
...  

Abstract Sequential administration of DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors has demonstrated clinical efficacy in patients with hematologic malignancies. However, the mechanism behind their clinical efficacy remains controversial. In this study, the methylation dynamics of 4 TSGs (p15INK4B, CDH-1, DAPK-1, and SOCS-1) were studied in sequential bone marrow samples from 30 patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) who completed a minimum of 4 cycles of therapy with 5-azacytidine and entinostat. Reversal of promoter methylation after therapy was observed in both clinical responders and nonresponders across all genes. There was no association between clinical response and either baseline methylation or methylation reversal in the bone marrow or purified CD34+ population, nor was there an association with change in gene expression. Transient global hypomethylation was observed in samples after treatment but was not associated with clinical response. Induction of histone H3/H4 acetylation and the DNA damage–associated variant histone γ-H2AX was observed in peripheral blood samples across all dose cohorts. In conclusion, methylation reversal of candidate TSGs during cycle 1 of therapy was not predictive of clinical response to combination “epigenetic” therapy. This trial is registered with http://www.clinicaltrials.gov under NCT00101179.

2021 ◽  
Vol 22 (11) ◽  
pp. 5516
Author(s):  
Qiting Zhang ◽  
Ziyan Wang ◽  
Xinyuan Chen ◽  
Haoxiang Qiu ◽  
Yifan Gu ◽  
...  

Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3355-3355
Author(s):  
Warren Fiskus ◽  
Pace Johnston ◽  
Rajeshree Joshi ◽  
Rekha Rao ◽  
Celalettin Ustun ◽  
...  

Abstract Lysine specific histone methylation and deacetylation and DNA hypermethylation are involved in the epigenetic silencing of tumor suppressor genes (TSG), e.g., p15 and p16. DNA methyltransferase (DNMT) inhibitors 5-azacytidine and 5-aza-2’-deoxycytidine demethylate the CpG dinucleotide islands in or near gene promoters, leading to derepression of TSGs in AML. SGI-110 (S110) (Cancer Res.2007; 67:6400) and SGI-1036 (SuperGen, Inc.) are novel, DNMT inhibitors, which also deplete DNMT1 levels. SGI-110 is a dinucleotide containing 5-aza-2’-deoxycytidine and SGI-1036 is a non-nucleoside heterocycle. The multi-protein complex PRC (polycomb repressive complex) 2 that contains the three core proteins EZH2, SUZ12 and EED, has intrinsic histone methyltransferase (HMTase) activity. This is mediated by the SET domain of EZH2, which induces trimethylation of histone H3 on lysine (K)-27. We recently reported that treatment with the pan-HDAC inhibitor panobinostat (LBH589, Novartis Pharmaceutical Corp) acetylates and inhibits the ATP binding and chaperone function of hsp90, as well as depletes the levels of EZH2, Suz12 and EED in cultured and primary AML cells (Mol Cancer Ther.2006; 5:3096). Within the PRC2 complex, EZH2 was shown to interact with and modulate the DNA methyltransferases DNMT1, DNMT3a and DNMT3b, which affects their binding to the EZH2-targeted gene promoters. In the present studies we determined the effects of SGI-110 or SGI-1036 and LBH589 on the PRC2 proteins EZH2 and SUZ12, and DNMT1, in the cultured (HL-60, OCI-AML3 and K562) and primary AML cells. Treatment with SGI-110 (0.5 to 2.0 μM) or SGI-1036 (0.5 and 1.0 μM) for 24 hours depleted protein levels of DNMT1 and EZH2 in the cultured and primary AML cells. SGI-110 and SGI-1036 promoted proteasomal degradation of DNMT1 and EZH2 since co-treatment with bortezomib significantly restored DNMT1 and EZH2 levels in the AML cells. Following treatment with SGI-110 or SGI-1036, bisulfite modification and methylation specific PCR demonstrated increase in unmethylated promoter DNA of p15 and JunB. This was associated with induction of the mRNA and protein levels of p15 and JunB, as well as caused inhibition of cell cycle progression (% of cells increased in G1 and increased in S phase) and colony growth in the soft agar. Treatment with 1.0 μM of SGI-110 or SGI-1036 also induced PARP cleavage activity of caspases and induced morphologic evidence of apoptosis in the AML cells. Co-treatment with 10 to 50 nM panobinostat enhanced SGI-110 or SGI-1036 mediated depletion of DNMT1 and EZH2, with more de-repression of the p15 and JunB and significant increase in apoptosis of AML cells. Collectively, these findings indicate that, SGI-110 and SGI-1036 deplete DNMT1 and EZH2 levels, as well as exert potent anti-AML activity. Additionally, combined epigenetic therapy consisting of SGI-110 or SGI-1036 in combination with panobinostat may represent a promising novel treatment of AML.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kinan Alhallak ◽  
Amanda Jeske ◽  
Pilar de la Puente ◽  
Jennifer Sun ◽  
Mark Fiala ◽  
...  

AbstractCancer patients undergo detrimental toxicities and ineffective treatments especially in the relapsed setting, due to failed treatment attempts. The development of a tool that predicts the clinical response of individual patients to therapy is greatly desired. We have developed a novel patient-derived 3D tissue engineered bone marrow (3DTEBM) technology that closely recapitulate the pathophysiological conditions in the bone marrow and allows ex vivo proliferation of tumor cells of hematologic malignancies. In this study, we used the 3DTEBM to predict the clinical response of individual multiple myeloma (MM) patients to different therapeutic regimens. We found that while no correlation was observed between in vitro efficacy in classic 2D culture systems of drugs used for MM with their clinical efficacious concentration, the efficacious concentration in the 3DTEBM were directly correlated. Furthermore, the 3DTEBM model retrospectively predicted the clinical response to different treatment regimens in 89% of the MM patient cohort. These results demonstrated that the 3DTEBM is a feasible platform which can predict MM clinical responses with high accuracy and within a clinically actionable time frame. Utilization of this technology to predict drug efficacy and the likelihood of treatment failure could significantly improve patient care and treatment in many ways, particularly in the relapsed and refractory setting. Future studies are needed to validate the 3DTEBM model as a tool for predicting clinical efficacy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 985-985 ◽  
Author(s):  
Emanuela Carlotti ◽  
Giuseppe A. Palumbo ◽  
Elena Oldani ◽  
Sara Acerboni ◽  
Francesco Di Raimondo ◽  
...  

Abstract Background. The addition of Rituximab to chemotherapy significantly improves the clinical outcome in previously untreated follicular Lymphoma (FL) patients. Rituximab mediates its anti lymphoma effect by complement dependent cytotoxicity (CDC) and antibody dependent cellular cytotoxicity (ADCC). Genomic polymorphism corresponding to phenotype expression of valine (V) or phenylalanine (F) at amino acid 158 on the FcgRIIIA influences the affinity of IgG1 to this receptor and the ADCC activity played by NK cells, macrophages and neutrophils. The presence of a FcgRIIIA-158V on NK cells has been shown to be associated with a better clinical response after treatment with Rituximab in Follicular Lymphoma but not B-CLL patients. Aim of the study. To correlate the achievement of a clinical and molecular response after the sequential treatment with CHOP and Rituximab with a) the presence of FcgRIIIA-158V/F polymorphism type in 88 previously untreated FL patients and b) the amount of follicular lymphoma cells detected at diagnosis in the bone marrow (BM) by quantitative PCR analysis of BCL2/IgH+ cells. Methods. FcgRIIIA-158V/F genotyping was performed using two different methods: a PCR with FRET probes and fluorescence melting curve analysis, on a LightCycler platform (Roche Diagnostics) and a Snapshot sequencing, using an ABI Prism 310 Genetic Analyzer (Applied Biosystems). Real Time Quantitative PCR (RQ-PCR) analysis of BCL2/IgH+ cells was performed using the ABI PRISM 7700 Detection System (Applied Biosytstems); standard curves were constructed using DNA from the cell line Karpas 422. Results. Among the 88 patients analyzed for FcgRIIIA polymorphism, 17 were homozygous for V/V (19%); 30 patients were homozygous for F/F (34%) and 41 heterozygous for V/F (46%). A complete clinical response (CR) was obtained in 76% of patients homozygous for V/V and in 68% of patients carrying an FcgRIIIA F polymorphism (p=NS). A molecular evaluation performed on BM one year after the end of Rituximab administration was available for 63 patients. In this group a disappearance of BCL2/IgH+ cells in BM was observed in 30% of homozygous V/V patients and 58% of FcgRIIIA-F carriers respectively (p=NS). A similar result was also obtained when the molecular analysis was performed on peripheral blood (PB). The multivariate analysis did not show any association between FcgRIIIA polymorphism and the achievement of a clinical complete response or combined clinical and molecular response. As previously reported (Rambaldi et al, Blood 2005) the best predictor of clinical CR was the quantitative molecular evaluation of BM BCL2/IgH+ cells which at diagnosis was performed in 50 out of 88 patients analyzed for FcgRIIIA polymorphism (p < 0.02). The freedom from recurrence (FFR) of patients who achieved a molecular response in BM after CHOP and Rituximab administration was 50% as compared to 31% for patients who did not (p < 0.02). Conclusions. FcgRIIIA polymorphism is not predictive of response for FL cases treated with sequential administration of CHOP-Rituximab. In this setting the quantitative evaluation of BCL2/IgH+ cells at diagnosis in BM remains the best predictor of clinical response. Moreover the achievement of a durable molecular response is associated with a better FFR.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2201-2201
Author(s):  
Mohd Hafiz Ahmad ◽  
Mahesh Hegde ◽  
Waihay J. Wong ◽  
Andrew Dunbar ◽  
Anneliese Carrascoso ◽  
...  

Abstract Patients with Familial Platelet disorder (FPD) have a germline RUNX1 mutation and are at high risk to developing hematologic malignancies (HM), primarily myelodysplastic syndrome and acute myeloid leukemia (lifetime risk~40%). To understand how germline RUNX1 mutations predispose to HM in vivo, we developed a Runx1 R188Q/+ mouse strain , mimicking the FPD-associated R201Q missense mutation. Analysis of the bone marrow cells in Runx1 R188Q/+ mice revealed a significant increase in the total number of bone marrow cells. Immunophenotypic analysis using Sca-1 and Cd86 markers revealed a significant increase in Sca-1 expression in hematopoietic stem and multi-potential progenitor cells, indicating a systemic inflammation in the bone marrow. In addition, the frequency of common-myeloid, granulocytic-monocytic and granulocytic progenitor cells were found significantly increased in the Runx1 R188Q/+ bone marrow. Accordingly, their colony-forming unit capacity was increased when compared to wildtype controls (wt/Runx1 R188Q/+ CFU average = 45/85), indicating a myeloid bias. The number and size of platelets were not altered in Runx1 R188Q/+ mice. However, platelet function was significantly reduced. The activation of the Cd41/Cd61 fibrinogen receptor complex in membrane after thrombin treatment was reduced in Runx1 R188Q/+ platelets. Similarly, the translocation of P-selectin by alpha granules and the secretion of serotonin by the dense granules were also reduced. Hematopoietic progenitor cells isolated from Runx1 R188Q/+ mice revealed a significant reduction in DNA-damage repair response in vitro. Quantitative analysis of nuclei with 53bp1-positive foci in response to ionizing radiation showed a marked increase in 53bp1-positive foci in Runx1 R188Q/+ nuclei, suggesting that Runx1 R188Q/+ cells have a defective repair of double strand DNA breaks. Furthermore, expression of DNA-damage repair pathway-associated Pmaip1 (Noxa) was significantly reduced in irradiated Runx1 R188Q/+ hematopoietic progenitor cells. To understand underlying mechanism responsible for the observed myeloid bias in Runx1 R188Q/+ cells, transcription profiling analysis was performed in myeloid progenitors from wildtype and Runx1 R188Q/+ mice, utilizing RNA-sequencing. A total of 39 genes were significantly deregulated (> 1.5 FC; FDR<0.05), including 8 up- and 31 down-regulated genes. The expression of three repressed genes with important function in hematopoietic differentiation and malignancy (Cdh1, Gja1, and Fcer1a) were validated by qRT-PCR. To study the FPD-associated pre-leukemic process in vivo, wildtype and Runx1 R188Q/+ mice were monitored for 20 months. Although Runx1 R188Q/+ mice remained healthy for 18 months, somatic mutations in their leukocytes were evident at 12 months. Targeted sequencing of 578 cancer genes (mIMPACT panel) in leukocyte DNA of two Runx1 R188Q/+ mice identified somatic mutations in Kdm6a, Setd1b, Amer1, and Esco1 (variant allele frequencies between 0.5% and 2.8%). These mutations were confirmed at stable frequency for eight following months. Since loss of the second Runx1 allele is a frequent somatic event in progression to FPD/HM, we evaluated the predisposition to HM in Mx1Cre-Runx1 R188Q/fl mice over time. Unlike Runx1 R188Q/+ mice, Runx1 R188Q/Δ mice succumbed to myeloid leukemia with a median latency of 37.5 weeks and full penetrance. In addition, the expression of oncogenic Nras-G12D, in Runx1 R188Q/Δ mice reduced the median latency to 14.7 weeks. These studies demonstrate that FPD-associated Runx1 germline mutations induce inflammation in hematopoietic stem cells, induce myeloid expansion with defective DNA-damage response and predispose to HM over time. These studies suggest that anti-inflammatory therapies in pre-symptomatic FPD patients may reduce clonal expansion and predisposition to HM. Disclosures Ebert: Exo Therapeutics: Membership on an entity's Board of Directors or advisory committees; Skyhawk Therapeutics: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Deerfield: Research Funding; GRAIL: Consultancy. Levine: Isoplexis: Membership on an entity's Board of Directors or advisory committees; Auron: Membership on an entity's Board of Directors or advisory committees; C4 Therapeutics: Membership on an entity's Board of Directors or advisory committees; Zentalis: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; QIAGEN: Membership on an entity's Board of Directors or advisory committees; Ajax: Membership on an entity's Board of Directors or advisory committees; Imago: Membership on an entity's Board of Directors or advisory committees; Mission Bio: Membership on an entity's Board of Directors or advisory committees; Gilead: Honoraria; Prelude: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Lilly: Honoraria; Morphosys: Consultancy; Roche: Honoraria, Research Funding; Incyte: Consultancy; Astellas: Consultancy; Amgen: Honoraria.


2021 ◽  
Vol 9 (5) ◽  
pp. e001743
Author(s):  
Abraham Nissani ◽  
Shaked Lev-Ari ◽  
Tomer Meirson ◽  
Elad Jacoby ◽  
Nethanel Asher ◽  
...  

BackgroundAdoptive cell therapy with T cells genetically engineered to express a chimeric antigen receptor (CAR-T) or tumor-infiltrating T lymphocytes (TIL) demonstrates impressive clinical results in patients with cancer. Lymphodepleting preconditioning prior to cell infusion is an integral part of all adoptive T cell therapies. However, to date, there is no standardization and no data comparing different non-myeloablative (NMA) regimens.MethodsIn this study, we compared NMA therapies with different doses of cyclophosphamide or total body irradiation (TBI) in combination with fludarabine and evaluated bone marrow suppression and recovery, cytokine serum levels, clinical response and adverse events.ResultsWe demonstrate that a cumulative dose of 120 mg/kg cyclophosphamide and 125 mg/m2 fludarabine (120Cy/125Flu) and 60Cy/125Flu preconditioning were equally efficient in achieving deep lymphopenia and neutropenia in patients with metastatic melanoma, whereas absolute lymphocyte counts (ALCs) and absolute neutrophil counts were significantly higher following 200 cGyTBI/75Flu-induced NMA. Thrombocytopenia was most profound in 120Cy/125Flu patients. 30Cy/75Flu-induced preconditioning in patients with acute lymphoblastic leukemia resulted in a minor ALC decrease, had no impact on platelet counts and did not yield deep neutropenia. Following cell infusion, 120Cy/125Flu patients with objective tumor response had significantly higher ALC and significant lower inflammatory indexes, such as neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). Receiver-operating characteristics curve analysis 7 days after cell infusion was performed to determine the cut-offs, which distinguish between responding and non-responding patients in the 120Cy/125Flu cohort. NLR≤1.79 and PLR≤32.7 were associated with clinical response and overall survival. Cytokine serum levels did not associate with clinical response in patients with TIL. Patients in the 120Cy/125Flu cohort developed significantly more acute NMA-related adverse events, including thrombocytopenia, febrile neutropenia and cardiotoxicity, and stayed significantly longer in hospital compared with the 60Cy/125Flu and TBI/75Flu cohorts.ConclusionsBone marrow depletion and recovery were equally affected by 120Cy/125Flu and 60Cy/125Flu preconditioning; however, toxicity and consequently duration of hospitalization were significantly lower in the 60Cy/125Flu cohort. Patients in the 30Cy/75Flu and TBI/75Flu groups rarely developed NMA-induced adverse events; however, both regimens were not efficient in achieving deep bone marrow suppression. Among the regimens, 60Cy/125Flu preconditioning seems to achieve maximum effect with minimum toxicity.


2020 ◽  
Author(s):  
Jing Wei ◽  
Jia Cheng ◽  
Nicholas J Waddell ◽  
Zi-Jun Wang ◽  
Xiaodong Pang ◽  
...  

Abstract Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


Hematology ◽  
2019 ◽  
Vol 2019 (1) ◽  
pp. 105-109 ◽  
Author(s):  
Stella M. Davies

Abstract Genetic susceptibility to myelodysplastic syndrome (MDS) occurs in children with inherited bone marrow failure syndromes, including Fanconi anemia, Shwachman Diamond syndrome, and dyskeratosis congenita. Available evidence (although not perfect) supports annual surveillance of the blood count and bone marrow in affected persons. Optimal treatment of MDS in these persons is most commonly transplantation. Careful consideration must be given to host susceptibility to DNA damage when selecting a transplant strategy, because significant dose reductions and avoidance of radiation are necessary. Transplantation before evolution to acute myeloid leukemia (AML) is optimal, because outcomes of AML are extremely poor. Children and adults can present with germline mutations in GATA2 and RUNX1, both of which are associated with a 30% to 40% chance of evolution to MDS. GATA2 deficiency may be associated with a clinically important degree of immune suppression, which can cause severe infections that can complicate transplant strategies. GATA2 and RUNX1 deficiency is not associated with host susceptibility to DNA damage, and therefore, conventional treatment strategies for MDS and AML can be used. RUNX1 deficiency has a highly variable phenotype, and MDS can occur in childhood and later in adulthood within the same families, making annual surveillance with marrow examination burdensome; however, such strategies should be discussed with affected persons, allowing an informed choice.


Sign in / Sign up

Export Citation Format

Share Document