Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma

Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 601-604 ◽  
Author(s):  
Rogier M. Reijmers ◽  
Richard W. J. Groen ◽  
Henk Rozemuller ◽  
Annemieke Kuil ◽  
Anneke de Haan-Kramer ◽  
...  

Abstract Expression of the heparan sulfate proteoglycan syndecan-1 is a hallmark of both normal and multiple myeloma (MM) plasma cells. Syndecan-1 could affect plasma cell fate by strengthening integrin-mediated adhesion via its core protein and/or by accommodating and presenting soluble factors via its HS side chains. Here, we show that inducible RNAi-mediated knockdown of syndecan-1 in human MM cells leads to reduced growth rates and a strong increase of apoptosis. Importantly, knockdown of EXT1, a copolymerase critical for HS chain biosynthesis, had similar effects. Using an innovative myeloma xenotransplantation model in Rag-2−/−γc−/− mice, we demonstrate that induction of EXT1 knockdown in vivo dramatically suppresses the growth of bone marrow localized myeloma. Our findings provide direct evidence that the HS chains of syndecan-1 are crucial for the growth and survival of MM cells within the bone marrow environment, and indicate the HS biosynthesis machinery as a potential treatment target in MM.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1830-1830 ◽  
Author(s):  
Rogier M Reijmers ◽  
Richard W.J. Groen ◽  
Henk Rozemuller ◽  
Annemieke Kuil ◽  
Anneke de Haan - Kramer ◽  
...  

Abstract Abstract 1830 Poster Board I-856 Expression of heparan sulfate proteoglycan (HSPG) syndecan-1 is a hallmark of both normal and multiple myeloma (MM) plasma cells. Syndecan-1 could affect plasma cell fate by strengthening integrin-mediated adhesion via its core protein and/or by accommodating and presenting soluble factors via its HS side-chains. Here, we show that inducible RNAi-mediated knockdown of syndecan-1 in human MM cells leads to reduced growth rates and a strong increase of apoptosis. Importantly, knockdown of EXT-1, a co-polymerase critical for HS-chain biosynthesis, had similar effects. By employing an innovative myeloma xenotransplant model in Rag-2-/-γc-/- mice, we demonstrate that induction of EXT-1 knockdown in vivo dramatically suppresses the growth of bone marrow localized myeloma. Our findings provide direct evidence that the HS-chains of syndecan-1 are crucial for the growth and survival of MM cells within the bone marrow environment, and indicate the HS biosynthesis machinery as a potential treatment target in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3511-3515 ◽  
Author(s):  
Franziska Jundt ◽  
Kristina Schulze Pröbsting ◽  
Ioannis Anagnostopoulos ◽  
Gwendolin Muehlinghaus ◽  
Manik Chatterjee ◽  
...  

Abstract Notch receptors expressed on hematopoietic stem cells interact with their ligands on bone marrow stromal cells and thereby control cell fate decisions and survival. We recently demonstrated that Notch signaling is involved in proliferation and survival of B cell-derived tumor cells of classic Hodgkin disease and described a novel mechanism for the oncogenic capacity of Notch. In this study we investigated whether Notch signaling is involved in the tight interactions between neoplastic plasma cells and their bone marrow microenvironment, which are essential for tumor cell growth in multiple myeloma (MM). Here we demonstrate that Notch receptors and their ligand Jagged1 are highly expressed in cultured and primary MM cells, whereas nonneoplastic counterparts show low to undetectable levels of Notch. Functional data indicate that ligand-induced Notch signaling is a growth factor for MM cells and suggest that these interactions contribute to myelomagenesis in vivo. (Blood. 2004;103:3511-3515)


Blood ◽  
2002 ◽  
Vol 100 (7) ◽  
pp. 2578-2585 ◽  
Author(s):  
Anthony Calabro ◽  
Martin M. Oken ◽  
Vincent C. Hascall ◽  
Anna M. Masellis

Hyaluronan (HA) is suggested to play a role in the pathophysiology of multiple myeloma. To further investigate the role of HA in this disease, we examined hyaluronan synthase (Has) gene expression and HA production in bone marrow mesenchymal progenitor cells (bmMPCs) derived from multiple myeloma patients. The relative abundance of mRNA for each HAS gene was determined using competitive reverse transcription–polymerase chain reaction (cRT-PCR), whereas HA production was detected by fluorophore-assisted carbohydrate electrophoresis (FACE). We determined the basal expression of Has isoforms in myeloma bmMPCs and then compared this expression with expression in healthy donor bmMPCs. Of the 3 Has isoforms, Has1 mRNA was expressed predominantly in myeloma bmMPCs, with expression 7.6-fold greater than Has2. Compared with normal bmMPCs, Has1 mRNA expression was 20-fold greater in myeloma bmMPCs. Normal bmMPCs predominantly expressed Has2 mRNA (8.2-fold greater than myeloma bmMPCs). Upon coculture of myeloma bmMPCs with plasma cells, Has1 transcript was strongly attenuated. FACE results show that myeloma bmMPCs synthesize 5.7-fold more HA than those from healthy donors. These data suggest that myeloma bmMPCs could be an important component of the myeloma pathophysiology in vivo by their increased expression of extracellular matrix (ECM) components relevant to plasma cell growth and survival.


2021 ◽  
Author(s):  
Kristin Roseth Aass ◽  
Robin Mjelle ◽  
Martin H. Kastnes ◽  
Synne S. Tryggestad ◽  
Luca M. van den Brink ◽  
...  

AbstractIL-32 is a non-classical cytokine expressed in cancers, inflammatory diseases and infections. IL-32 can have both extracellular and intracellular functions, and its receptor is not identified. We here demonstrate that endogenously expressed, intracellular IL-32 binds to components of the mitochondrial respiratory chain and promotes oxidative phosphorylation. Knocking out IL-32 in malignant plasma cells significantly reduced survival and proliferation in vitro and in vivo. High throughput transcriptomic and MS-metabolomic profiling of IL-32 KO cells revealed that loss of IL-32 leads to profound perturbations in metabolic pathways, with accumulation of lipids, pyruvate precursors and citrate, indicative of reduced mitochondrial function. IL-32 is expressed in a subgroup of multiple myeloma patients with an inferior prognosis. Primary myeloma cells expressing IL-32 were characterized by a plasma cell gene signature associated with immune activation, proliferation and oxidative phosphorylation. We propose a novel concept for regulation of metabolism by an intracellular cytokine and identify IL-32 as an endogenous growth and survival factor for malignant plasma cells. IL-32 is a potential prognostic biomarker and a treatment target in multiple myeloma.


Leukemia ◽  
2016 ◽  
Vol 31 (8) ◽  
pp. 1743-1751 ◽  
Author(s):  
S Hipp ◽  
Y-T Tai ◽  
D Blanset ◽  
P Deegen ◽  
J Wahl ◽  
...  

Abstract B-cell maturation antigen (BCMA) is a highly plasma cell-selective protein that is expressed on malignant plasma cells of multiple myeloma (MM) patients and therefore is an ideal target for T-cell redirecting therapies. We developed a bispecific T-cell engager (BiTE) targeting BCMA and CD3ɛ (BI 836909) and studied its therapeutic impacts on MM. BI 836909 induced selective lysis of BCMA-positive MM cells, activation of T cells, release of cytokines and T-cell proliferation; whereas BCMA-negative cells were not affected. Activity of BI 836909 was not influenced by the presence of bone marrow stromal cells, soluble BCMA or a proliferation-inducing ligand (APRIL). In ex vivo assays, BI 836909 induced potent autologous MM cell lysis in both, newly diagnosed and relapsed/refractory patient samples. In mouse xenograft studies, BI 836909 induced tumor cell depletion in a subcutaneous NCI-H929 xenograft model and prolonged survival in an orthotopic L-363 xenograft model. In a cynomolgus monkey study, administration of BI 836909 led to depletion of BCMA-positive plasma cells in the bone marrow. Taken together, these results show that BI 836909 is a highly potent and efficacious approach to selectively deplete BCMA-positive MM cells and represents a novel immunotherapeutic for the treatment of MM.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2056-2056 ◽  
Author(s):  
Chantiya Chanswangphuwana ◽  
Michael P. Rettig ◽  
Walter Akers ◽  
Deep Hathi ◽  
Matthew Holt ◽  
...  

Abstract Background: The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) affects disease progression and provides resistance to therapeutic agents. Very-late-antigen 4 (VLA-4, α4β1 integrin, CD49d/CD29) is a noncovalent, heterodimeric transmembrane receptor that is strongly implicated in the pathogenesis of MM via altering cell trafficking, proliferation and drug resistance. LLP2A is a high-affinity peptidomimetic ligand for activated VLA-4. We recently reported (Soodgupta et al. J. Nucl. Med 2016) the sensitive and specific molecular imaging of activated VLA-4 in mouse MM tumors using 64Cu-LLP2A and LLP2A-Cy5. Here we extended these studies by further characterizing VLA-4 expression in primary human MM samples and malignant plasma cells in mouse models of MM. Methods: We evaluated VLA-4 expression in 5 human MM cell lines (U266, OPM2, H929, RPMI-8226 and MM1.S), one mouse MM cell line (5TGM1) and seventeen primary human MM bone marrow samples by flow cytometry using LLP2A-Cy5, soluble VCAM-1/Fc recombinant protein and CD49d (α4) and CD29 (β1) antibodies. The relative mean fluorescence intensity (RMFI) of LLP2A-Cy5 binding was calculated by dividing the MFI of LLP2A-Cy5 binding in the absence of BIO5192 (small molecule VLA-4 inhibitor) by the MFI of LLP2A-Cy5 binding in the presence of excess BIO5192. The 5TGM1/KaLwRij immunocompetent mouse model of MM was used for in vivo study. Results: The expression of activated VLA-4 on MM cell lines as measured by LLP2A-Cy5+ mean fluorescent intensity (MFI) varied 10-fold as follows (LLP2A-Cy5 MFI in parentheses): 5TGM1 (23.7) > U266 (16.1) > OPM2 (4.6) > H929 (3.4) > RPMI-8226 (3.2) > MM1.S (2.1). We observed similar variable expression of LLP2A-Cy5 binding to primary human CD138+CD38+ MM plasma cells (PCs), with 76.47% (13/17) of MM patients exhibiting greater than 20% LLP2A-Cy5+ PCs. expressing VLA-4 on CD138+CD38+ cells. Overall, the mean percentage of positive cells and LLP2A-Cy5 relative MFI (RMFI) on malignant CD138+ PCs from these 13 patients were 78.2% (43.8-98.3%) and 4.3 (1.7-10.8), respectively. Other hematopoietic cells within the BM samples expressed less VLA-4 in descending order as follows; monocytes (58.2%, RMFI 3.0), T-lymphocytes (34.4%, RMFI 2.1) and B-lymphocytes (21.6%, RMFI 1.6). These levels of VLA-4 expression on normal cell subsets within MM patients were comparable to normal blood donors. In general, there was good correlation between LLP2A-Cy5 binding and expression of CD49d and CD29 on CD138+ PCs in MM patients. To our surprise, the four MM patients with <20% LLP2A-Cy5 binding demonstrated high expression of CD49d (92.1%) but very low percentages of CD29 positive cells (17.3%). Using BIO5192 (VLA-4 inhibitor), we found that the LLP2A-Cy5 reagent allowed more accurate detection of activated VLA-4 than the soluble VCAM-1 binding assay as determined by the magnitude of inhibition of binding in the presence of inhibitor. We next evaluated targeting VLA-4 molecule in murine MM model. Preliminary mouse mobilization studies demonstrated that VLA-4 inhibitors effectively and rapidly mobilized murine 5TGM1 MM cells from the bone marrow to the blood (2.49-fold increase in circulating GFP+CD138+ cells) within 1 hour of injection. Summary:This study is the first demonstration that activated VLA4 can be detected on primary human MM cells using LLP2A. These data support the continued development of LLP2A as a molecular diagnostic imaging reagent for MM and as a potential therapeutic target of VLA-4 in MM. Ongoing studies are testing whether small molecule VLA-4 inhibitors can sensitize MM cells to cytotoxic therapy in vivo. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (18) ◽  
pp. 4309-4318 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Ender Soydan ◽  
Weihua Song ◽  
Mariateresa Fulciniti ◽  
Kihyun Kim ◽  
...  

Abstract CS1 is highly expressed on tumor cells from the majority of multiple myeloma (MM) patients regardless of cytogenetic abnormalities or response to current treatments. Furthermore, CS1 is detected in MM patient sera and correlates with active disease. However, its contribution to MM pathophysiology is undefined. We here show that CS1 knockdown using lentiviral short-interfering RNA decreased phosphorylation of ERK1/2, AKT, and STAT3, suggesting that CS1 induces central growth and survival signaling pathways in MM cells. Serum deprivation markedly blocked survival at earlier time points in CS1 knockdown compared with control MM cells, associated with earlier activation of caspases, poly(ADP-ribose) polymerase, and proapoptotic proteins BNIP3 and BIK. CS1 knockdown further delayed development of MM tumor and prolonged survival in mice. Conversely, CS1 overexpression promoted myeloma cell growth and survival by significantly increasing myeloma adhesion to bone marrow stromal cells (BMSCs) and enhancing myeloma colony formation in semisolid culture. Moreover, CS1 increased c-maf–targeted cyclin D2-dependent proliferation, -integrin β7/αE-mediated myeloma adhesion to BMSCs, and -vascular endothelial growth factor-induced bone marrow angiogenesis in vivo. These studies provide direct evidence of the role of CS1 in myeloma pathogenesis, define molecular mechanisms regulating its effects, and further support novel therapies targeting CS1 in MM.


Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2688-2693 ◽  
Author(s):  
F Caligaris-Cappio ◽  
L Bergui ◽  
MG Gregoretti ◽  
G Gaidano ◽  
M Gaboli ◽  
...  

We have verified the hypothesis that multiple myeloma (MM) may be disseminated by circulating clonogenic cells that selectively home to the bone marrow (BM) to receive the signal(s) leading to proliferation, terminal differentiation, and production of the osteoclast activating factors. Long-term cultures of stromal cells have been developed from the BM of nine patients with MM. These cells were mostly fibroblast- like elements, interspersed with a proportion of scattered macrophages and rare osteoclasts. BM stromal cells were CD54+, produced high levels of interleukin-6 (IL-6) and measurable amounts of IL-1 beta, and were used as feeder layers for autologous peripheral blood mononuclear cells (PBMC). After 3 weeks of cocultures, monoclonal B lymphocytes and plasma cells, derived from PBMC, developed and the number of osteoclasts significantly increased. Both populations grew tightly adherent to the stromal cell layer and their expansion was matched by a sharp increase of IL-6 and by the appearance of IL-3 in the culture supernatant. These data attribute to BM stromal cells a critical role in supporting the growth of B lymphocytes, plasma cells, and osteoclasts and the in vivo dissemination of MM.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-12-SCI-12
Author(s):  
Karin Vanderkerken ◽  
Kim De Veirman ◽  
Ken Maes ◽  
Eline Menu ◽  
Elke De Bruyne

Apoptosis plays a key role, not only in normal homeostasis but also in protection against genomic instability. Protection against apoptosis is a hallmark of cancer and is mainly regulated by the overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-Xl or Mcl-1. This results in increased survival of the tumor cells and resistance to therapy. This presentation will focus on MCL-1 (myeloid cell leukemia 1), its expression and its role as potential target in multiple myeloma (MM). MCL1 gene regions are one the most amplified gene regions in several human cancers and Mcl-1 activity is often associated with therapy resistance and relapse. Mcl-1 binds to and sequesters the pro-apoptotic BH3 proteins, thereby preventing apoptosis. Mcl-1 is overexpressed on MM cells from newly diagnosed patients compared to normal plasma cells and in MM cells at relapse. This overexpression is furthermore associated with a shorter survival of these patients. Increased Mcl-1 expression can result either from genetic lesions or by induction through interaction with the bone marrow microenvironment. Its expression is correlated with the molecular heterogeneity of the myeloma patients; while the CCDN1 group has high BCL2 and low MCL-1 expression; the MMSET and MAF group has high MCL-1 and low BCL2 expression. Unlike Bcl-2 and Bcl-Xl, Mcl-1 has a large unstructured aminoterminus and its activity is mainly dependent on posttranslational modifications. The bone marrow microenvironment, by producing high levels of interleukin 6, also induces the upregulation of Mcl-1. Furthermore, our group recently demonstrated that not only stromal cells in the bone marrow microenvironment, but also MDSC (myeloid derived suppressor cells) induce survival of MM cells by increasing Mcl-1 levels through the AMPK pathway. As such, these data suggest the potential therapeutic benefit of targeting Mcl-1 in MM patients. Developing the first-generation inhibitors appeared to be challenging, especially in view of the occurrence of unwanted off target effects. Recent preclinical data with new, selective Mcl-1 inhibitors show promising anti-tumor effects both in vitro and in in vivo myeloma models, either alone or in combination with the Bcl-2 selective inhibitor, venetoclax, especially as it was demonstrated that high levels of MCL-1 are associated with venetoclax resistance in MM. In addition, it was also shown that proteasome inhibition can trigger Mcl-1 accumulation, further pointing to the importance of Mcl-1 inhibition. Induction of NOXA, as an inhibitor of Mcl-1, is also suggested as a therapeutic option, especially in combinations with other drugs. Clinically, following preclinical results, several new Mcl-1 inhibitors have entered phase I trials. Most of them are still recruiting patients, and as such too early to have results. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document