scholarly journals Loss of the Rho GTPase activating protein p190-B enhances hematopoietic stem cell engraftment potential

Blood ◽  
2009 ◽  
Vol 114 (17) ◽  
pp. 3557-3566 ◽  
Author(s):  
Haiming Xu ◽  
Satyam Eleswarapu ◽  
Hartmut Geiger ◽  
Kathleen Szczur ◽  
Deidre Daria ◽  
...  

Abstract Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow, self-renewal, proliferation, and differentiation to mature blood cells. Here, we show that loss of p190-B RhoGTPase activating protein, a negative regulator of Rho GTPases, results in enhanced long-term engraftment during serial transplantation. This effect is associated with maintenance of functional HSC-enriched cells. Furthermore, loss of p190-B led to marked improvement of HSC in vivo repopulation capacity during ex vivo culture without altering proliferation and multilineage differentiation of HSC and progeny. Transcriptional analysis revealed that p190-B deficiency represses the up-regulation of p16Ink4a in HSCs in primary and secondary transplantation recipients, providing a possible mechanism of p190-B–mediated HSC functions. Our study defines p190-B as a critical transducer element of HSC self-renewal activity and long-term engraftment, thus suggesting that p190-B is a target for HSC-based therapies requiring maintenance of engraftment phenotype.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1292-1292
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 1292 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our recent study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a μ-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by μ-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. These findings identify unexpected functions for GSK3 in HSC homeostasis, suggest a therapeutic approach to expand HSCs in vivo using currently available medications that target GSK3 and mTOR, and provide a compelling explanation for the clinically prevalent hematopoietic effects of lithium, a widely prescribed GSK3 inhibitor. In the following study, we found that the combination of Gsk3 inhibitor and mTOR inhibitor can expand phenotypic HSCs in vivo and maintain functional HSC in ex vivo culture. This study will provide the basis for a new clinical approach to improve the efficiency of bone marrow transplantation. Disclosures: Klein: Follica: Consultancy.


Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Laura S. Haneline ◽  
Troy A. Gobbett ◽  
Rema Ramani ◽  
Madeleine Carreau ◽  
Manuel Buchwald ◽  
...  

Fanconi anemia (FA) is a complex genetic disorder characterized by progressive bone marrow (BM) aplasia, chromosomal instability, and acquisition of malignancies, particularly myeloid leukemia. We used a murine model containing a disruption of the murine homologue ofFANCC (FancC) to evaluate short- and long-term multilineage repopulating ability of FancC −/− cells in vivo. Competitive repopulation assays were conducted where “test”FancC −/− or FancC +/+ BM cells (expressing CD45.2) were cotransplanted with congenic competitor cells (expressing CD45.1) into irradiated mice. In two independent experiments, we determined that FancC −/− BM cells have a profound decrease in short-term, as well as long-term, multilineage repopulating ability. To determine quantitatively the relative production of progeny cells by each test cell population, we calculated test cell contribution to chimerism as compared with 1 × 105 competitor cells. We determined that FancC −/− cells have a 7-fold to 12-fold decrease in repopulating ability compared with FancC +/+cells. These data indicate that loss of FancC function results in reduced in vivo repopulating ability of pluripotential hematopoietic stem cells, which may play a role in the development of the BM failure in FA patients. This model system provides a powerful tool for evaluation of experimental therapeutics on hematopoietic stem cell function.


2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Abstract Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Stem Cells ◽  
2013 ◽  
Vol 31 (3) ◽  
pp. 560-571 ◽  
Author(s):  
Robin Jeannet ◽  
Qi Cai ◽  
Hongjun Liu ◽  
Hieu Vu ◽  
Ya-Huei Kuo

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1362-1362
Author(s):  
Yong Wang ◽  
Bradley A. Schulte ◽  
Amanda C. LaRue ◽  
Makio Ogawa ◽  
Daohong Zhou

Abstract Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This later effect has been attributed to the damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to the impairment of HSC self-renewal. The results showed that exposure of C57BL/6 mice to a sublethal dose (6.5 Gy) of total body irradiation (TBI) resulted in a long-lasting quantitative and qualitative reduction in HSCs (Lin− c-kit+ Sca-1+ or LKS+ cells). Compared to control HSCs, HSCs from irradiated BM at 4 weeks after TBI exhibited a significant reduction in day-35 CAFC frequency and deficiency in cell proliferation and colony formation in a single cell culture assay stimulated with SCF/TPO and SCF/TPO/IL-3, respectively. In addition, transplantation of irradiated HSCs (500 LKS+ cells/recipient) produced less than 1% long-term (2-month) engraftment in a competitive repopulation assay while transplantation of the same number of control HSCs resulted in 24.8% engraftment. Furthermore, HSCs from irradiated mice expressed increased levels of p16Ink4a and senescence-associated beta-galactosidase (SA-beta-gal), two commonly used biomarkers of cellular senescence. In contrast, hematopoietic progenitor cells (Lin− c-kit+ Sca-1− or LKS− cells) from irradiated mice did not show significant changes in clonogenesity in a CFU assay and expressed minimal levels of p16Ink4a and SA-beta-gal. These results suggest that exposure to IR can induce senescence selectively in HSCs but not in HPCs. Interestingly, this IR- induced HSC senescence was associated with a prolonged elevation of p21Cip1/Waf1, p16Ink4a and p19ARF mRNA expression, whereas the expression of p27Kip1, p18Ink4c and p19 Ink4d mRNA was not increased. This suggests that p21Cip1/Waf1, p16Ink4a and p19ARF may play an important role in IR-induced senescence in HSCs, since their expression has been implicated in the initiation, establishment and maintenance of cellular senescence. Therefore, these findings provide valuable insights into the mechanisms underlying IR-induced long-term BM damage. This could lead to the discovery of novel molecular targets for intervention to circumvent IR-induced BM toxicity. In addition, understanding how normal HSCs senesce after IR and chemotherapy will help us to elucidate the molecular mechanisms whereby leukemia/cancer stem cells evade these cancer treatments and provide better knowledge of organismal aging.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1137-1137
Author(s):  
Tong Wu ◽  
Hyeoung Joon Kim ◽  
Stephanie E. Sellers ◽  
Kristin E. Meade ◽  
Brian A. Agricola ◽  
...  

Abstract Low-level retroviral transduction and engraftment of hematopoietic long-term repopulating cells in large animals and humans remain primary obstacles to the successful application of hematopoietic stem cell(HSC) gene transfer in humans. Recent studies have reported improved efficiency by including stromal cells(STR), or the fibronectin fragment CH-296(FN), and various cytokines such as flt3 ligand(FLT) during ex vivo culture and transduction in nonhuman primates. In this work, we extend our studies using the rhesus competitive repopulation model to further explore optimal and transduction in the presence of either preformed autologous STR or immobilized FN. Long-term clinically relevant gene marking levels in multiple hematopoietic lineages from both conditions were demonstrated in vivo by semiquantitative PCR, colony PCR, and genomic Southern blotting, suggesting that FN could replace STR in ex vivo transduction protocols. Second, we compared transduction on FN in the presence of IL-3, IL-6, stem cell factor(SCF), and FLT(our best cytokine combination in prior studies)with a combination of megakaryocyte growth and development factor(MGDF), SCF, and FLT. Gene marking levels were equivalent in these animals, with no significant effect on retroviral gene transfer efficiency assessed in vivo by the replacement of IL-3 and IL-6 with MGDF. Our results indicate that SCF/G-CSF-mobilized PB CD34+ cells are transduced with equivalent efficiency in the presence of either STR or FN, with stable long-term marking of multiple lineages at levels of 10–15% and transient marking as high as 54%. These results represent an advance in the field of HSC gene transfer using methods easily applied in the clinical setting.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 614-614 ◽  
Author(s):  
Haiming Xu ◽  
Hartmut Geiger ◽  
Kathleen Szczur ◽  
Deidra Deira ◽  
Yi Zheng ◽  
...  

Abstract Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow (BM), self-renewal, proliferation and differentiation to mature blood cells. However, the molecular regulation of HSC engraftment is still poorly defined. Small Rho GTPases are critical regulator of cell migration, proliferation and differentiation in multiple cell types. While their role in HSC functions has begun to be understood, the role of their regulator in vivo has been understudied. P190-B GTPase Activating Protein (GAP), a negative regulator of Rho activity, has been implicated in regulating cell size and adipogenesis-myogenesis cell fate determination during fetal development (Sordella, Dev Cell, 2002; Cell 2003). Here, we investigated the role of p190-B in HSC/P engraftment. Since mice lacking p190-B die before birth, serial competitive repopulation assay was performed using fetal liver (FL) tissues from day E14.5 WT and p190-B−/− embryos. WT and p190-B−/− FL cells exhibited similar levels of engraftment in primary recipients. However, the level of contribution of p190-B−/− cells to peripheral blood and bone marrow was maintained between the primary and secondary recipients and still easily detectable in tertiary recipients, while the level of contribution of FL WT cells dramatically decreased with successive serial transplantion and was barely detectable in tertiary recipients. The contribution to T cell, B cell and myeloid cell reconstitution was similar between the genotypes. A pool of HSC was maintained in serially transplanted p190-B−/− animals, since LinnegScaposKitpos (LSK) cells were still present in the BM of p190-B−/− secondary engrafted mice while this population disappeared in WT controls. Importantly, this enhanced long term engraftment was due to a difference in the functional capacity of p190-B−/− HSC compared to WT HSC since highly enriched p190-B−/− HSC (LSK) demonstrated similar enhanced serial transplantation potential. Because previous studies have suggested that the loss of long term function of HSC during serial transplantation can depend, at least in part, on the upregulation of the cyclin dependent kinase inhibitor p16Ink4a (Ito et al, Nat Med 2006), the expression of p16Ink4a was examined during serial transplantation. While expression of p16Ink4a increased in WT HSC in primary and secondary recipients, p16Ink4a remained low in p190-B−/− HSC, which indicated that p190-B-deficiency represses the upregulation of p16Ink4a in HSC in primary and secondary transplant recipients. This provides a possible mechanism of p190-B-mediated HSC functions. We next examined whether p190-B-deficiency may preserve the repopulating capacity of HSC/P during ex vivo cytokine-induced culture. While freshly isolated LSK cells from WT and p190-B−/− mice exhibited comparable intrinsic clonogenic capacity, the frequency of colony-forming unit after 7 days in culture was 2 fold-higher in p190-B−/− compared with WT cultures, resulting in a net CFU expansion. Furthermore, competitive repopulation assays showed significantly higher repopulating activity in mice that received p190-B−/− cultured cells compared with WT cells equivalent to a 4.4-fold increase in the estimated frequency of repopulating units. Interestingly, p190-deficiency did not alter cell cycling rate or survival both in vivo and in vitro. Therefore, p190-B-deficiency maintains key HSC functions either in vivo or in ex vivo culture without altering cycling rate and survival of these cells. These findings define p190-B as a critical regulator of HSC functions regulating self renewal activity while maintaining a balance between proliferation and differentiation.


Sign in / Sign up

Export Citation Format

Share Document