scholarly journals Comparison of gene expression profiles between human and mouse monocyte subsets

Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. e10-e19 ◽  
Author(s):  
Molly A. Ingersoll ◽  
Rainer Spanbroek ◽  
Claudio Lottaz ◽  
Emmanuel L. Gautier ◽  
Marion Frankenberger ◽  
...  

Abstract Blood of both humans and mice contains 2 main monocyte subsets. Here, we investigated the extent of their similarity using a microarray approach. Approximately 270 genes in humans and 550 genes in mice were differentially expressed between subsets by 2-fold or more. More than 130 of these gene expression differences were conserved between mouse and human monocyte subsets. We confirmed numerous of these differences at the cell surface protein level. Despite overall conservation, some molecules were conversely expressed between the 2 species' subsets, including CD36, CD9, and TREM-1. Other differences included a prominent peroxisome proliferator-activated receptor γ (PPARγ) signature in mouse monocytes, which is absent in humans, and strikingly opposed patterns of receptors involved in uptake of apoptotic cells and other phagocytic cargo between human and mouse monocyte subsets. Thus, whereas human and mouse monocyte subsets are far more broadly conserved than currently recognized, important differences between the species deserve consideration when models of human disease are studied in mice.

2005 ◽  
Vol 21 (3) ◽  
pp. 351-361 ◽  
Author(s):  
Ralph L. House ◽  
Joseph P. Cassady ◽  
Eugene J. Eisen ◽  
Thomas E. Eling ◽  
Jennifer B. Collins ◽  
...  

Gene expression was measured during t10c12-CLA-induced body fat reduction in a polygenic obese line of mice. Adult mice ( n = 185) were allotted to a 2 × 2 factorial experiment consisting of either nonobese (ICR-control) or obese (M16-selected) mice fed a 7% fat, purified diet containing either 1% linoleic acid (LA) or 1% t10c12-CLA. Body weight (BW) by day 14 was 12% lower in CLA- compared with LA-fed mice ( P < 0.0001). By day 14, t10c12-CLA reduced weights of epididymal, mesenteric, and brown adipose tissues, as a percentage of BW, in both lines by 30, 27, and 58%, respectively, and increased liver weight/BW by 34% ( P < 0.0001). Total RNA was isolated and pooled (4 pools per tissue per day) from epididymal adipose ( days 5 and 14) of the obese mice to analyze gene expression profiles using Agilent mouse oligo microarray slides representing >20,000 genes. Numbers of genes differentially expressed by greater than or equal to twofold in epididymal adipose ( days 5 and 14) were 29 and 125, respectively. It was concluded that, in adipose tissue, CLA increased expression of uncoupling proteins (1 and 2), carnitine palmitoyltransferase system, tumor necrosis factor-α ( P < 0.05), and caspase-3 but decreased expression of peroxisome proliferator-activated receptor-γ, glucose transporter-4, perilipin, caveolin-1, adiponectin, resistin, and Bcl-2 ( P < 0.01). In conclusion, this experiment has revealed candidate genes that will be useful in elucidating mechanisms of adipose delipidation.


2019 ◽  
Vol 20 (22) ◽  
pp. 5682 ◽  
Author(s):  
Yusuke Sasaki ◽  
Sana Raza-Iqbal ◽  
Toshiya Tanaka ◽  
Kentaro Murakami ◽  
Motonobu Anai ◽  
...  

Pemafibrate is the first clinically-available selective peroxisome proliferator-activated receptor α modulator (SPPARMα) that has been shown to effectively improve hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. Global gene expression analysis reveals that the activation of PPARα by pemafibrate induces fatty acid (FA) uptake, binding, and mitochondrial or peroxisomal oxidation as well as ketogenesis in mouse liver. Pemafibrate most profoundly induces HMGCS2 and PDK4, which regulate the rate-limiting step of ketogenesis and glucose oxidation, respectively, compared to other fatty acid metabolic genes in human hepatocytes. This suggests that PPARα plays a crucial role in nutrient flux in the human liver. Additionally, pemafibrate induces clinically favorable genes, such as ABCA1, FGF21, and VLDLR. Furthermore, pemafibrate shows anti-inflammatory effects in vascular endothelial cells. Pemafibrate is predicted to exhibit beneficial effects in patients with atherogenic dyslipidemia and diabetic microvascular complications.


2020 ◽  
Vol 21 (24) ◽  
pp. 9740
Author(s):  
Liliya V. Vasileva ◽  
Martina S. Savova ◽  
Kristiana M. Amirova ◽  
Zhivka Balcheva-Sivenova ◽  
Claudio Ferrante ◽  
...  

Caffeic acid (CA) and chlorogenic acid (CGA) are phenolic compounds claimed to be responsible for the metabolic effects of coffee and tea consumption. Along with their structural similarities, they share common mechanisms such as activation of the AMP-activated protein kinase (AMPK) signaling. The present study aimed to investigate the anti-obesity potential of CA and CGA as co-treatment in human adipocytes. The molecular interactions of CA and CGA with key adipogenic transcription factors were simulated through an in silico molecular docking approach. The expression levels of white and brown adipocyte markers, as well as genes related to lipid metabolism, were analyzed by real-time quantitative PCR and Western blot analyses. Mechanistically, the CA/CGA combination induced lipolysis, upregulated AMPK and browning gene expression and downregulated peroxisome proliferator-activated receptor γ (PPARγ) at both transcriptional and protein levels. The gene expression profiles of the CA/CGA-co-treated adipocytes strongly resembled brown-like signatures. Major pathways identified included the AMPK- and PPAR-related signaling pathways. Collectively, these findings indicated that CA/CGA co-stimulation exerted a browning-inducing potential superior to that of either compound used alone which merits implementation in obesity management. Further, the obtained data provide additional insights on how CA and CGA modify adipocyte function, differentiation and lipid metabolism.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1498 ◽  
Author(s):  
Elisa Belloni ◽  
Anna Di Matteo ◽  
Davide Pradella ◽  
Margherita Vacca ◽  
Christopher D. R. Wyatt ◽  
...  

Alternative splicing (AS) plays an important role in expanding the complexity of the human genome through the production of specialized proteins regulating organ development and physiological functions, as well as contributing to several pathological conditions. How AS programs impact on the signaling pathways controlling endothelial cell (EC) functions and vascular development is largely unknown. Here we identified, through RNA-seq, changes in mRNA steady-state levels in ECs caused by the neuro-oncological ventral antigen 2 (Nova2), a key AS regulator of the vascular morphogenesis. Bioinformatics analyses identified significant enrichment for genes regulated by peroxisome proliferator-activated receptor-gamma (Ppar-γ) and E2F1 transcription factors. We also showed that Nova2 in ECs controlled the AS profiles of Ppar-γ and E2F dimerization partner 2 (Tfdp2), thus generating different protein isoforms with distinct function (Ppar-γ) or subcellular localization (Tfdp2). Collectively, our results supported a mechanism whereby Nova2 integrated splicing decisions in order to regulate Ppar-γ and E2F1 activities. Our data added a layer to the sequential series of events controlled by Nova2 in ECs to orchestrate vascular biology.


2007 ◽  
Vol 4 (2) ◽  
pp. 1-23
Author(s):  
Amitava Karmaker ◽  
Kihoon Yoon ◽  
Mark Doderer ◽  
Russell Kruzelock ◽  
Stephen Kwek

Summary Revealing the complex interaction between trans- and cis-regulatory elements and identifying these potential binding sites are fundamental problems in understanding gene expression. The progresses in ChIP-chip technology facilitate identifying DNA sequences that are recognized by a specific transcription factor. However, protein-DNA binding is a necessary, but not sufficient, condition for transcription regulation. We need to demonstrate that their gene expression levels are correlated to further confirm regulatory relationship. Here, instead of using a linear correlation coefficient, we used a non-linear function that seems to better capture possible regulatory relationships. By analyzing tissue-specific gene expression profiles of human and mouse, we delineate a list of pairs of transcription factor and gene with highly correlated expression levels, which may have regulatory relationships. Using two closely-related species (human and mouse), we perform comparative genome analysis to cross-validate the quality of our prediction. Our findings are confirmed by matching publicly available TFBS databases (like TRANFAC and ConSite) and by reviewing biological literature. For example, according to our analysis, 80% and 85.71% of the targets genes associated with E2F5 and RELB transcription factors have the corresponding known binding sites. We also substantiated our results on some oncogenes with the biomedical literature. Moreover, we performed further analysis on them and found that BCR and DEK may be regulated by some common transcription factors. Similar results for BTG1, FCGR2B and LCK genes were also reported.


Sign in / Sign up

Export Citation Format

Share Document