Hoxb4-YFP reporter mouse model: a novel tool for tracking HSC development and studying the role of Hoxb4 in hematopoiesis

Blood ◽  
2011 ◽  
Vol 117 (13) ◽  
pp. 3521-3528 ◽  
Author(s):  
David Hills ◽  
Ruby Gribi ◽  
Jan Ure ◽  
Natalija Buza-Vidas ◽  
Sidinh Luc ◽  
...  

Abstract Hoxb4 overexpression promotes dramatic expansion of bone marrow (BM) hematopoietic stem cells (HSCs) without leukemic transformation and induces development of definitive HSCs from early embryonic yolk sac and differentiating embryonic stem cells. Knockout studies of Hoxb4 showed little effect on hematopoiesis, but interpretation of these results is obscured by the lack of direct evidence that Hoxb4 is expressed in HSCs and possible compensatory effects of other (Hox) genes. To evaluate accurately the pattern of Hoxb4 expression and to gain a better understanding of the physiologic role of Hoxb4 in the hemato-poietic system, we generated a knock-in Hoxb4–yellow fluorescent protein (YFP) reporter mouse model. We show that BM Lin−Sca1+c-Kit+ cells express Hoxb4-YFP and demonstrate functionally in the long-term repopulation assay that definitive HSCs express Hoxb4. Similarly, aorta-gonad-mesonephrous–derived CD45+CD144+ cells, enriched for HSCs, express Hoxb4. Furthermore, yolk sac and placental HSC populations express Hoxb4. Unexpectedly, Hoxb4 expression in the fetal liver HSCs is lower than in the BM, reaching negligible levels in some HSCs, suggesting an insignificant role of Hoxb4 in expansion of fetal liver HSCs. Hoxb4 expression therefore would not appear to correlate with the cycling status of fetal liver HSCs, although highly proliferative HSCs from young BM show strong Hoxb4 expression.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1709-1709
Author(s):  
Jonathon F. Hutton ◽  
Fiona Khor ◽  
Vlad Rozenkov ◽  
Ian D. Lewis ◽  
Richard J. D’Andrea

Abstract Haematopoietic stem cells (HSCs) expand in number during fetal liver hematopoiesis via a process that is not understood. Establishment of conditions supporting HSC maintenance and expansion ex vivo is critical for wider application of cord blood derived HSC. We have shown that bone morphogenic protein (BMP) 4 secreted by mouse foetal liver cells contributes to expansion of cord blood-derived HSCs during in vitro co-culture. Significant levels of BMP-4 mRNA and secreted protein were produced by the supportive murine foetal liver stromal cell line AFT024. Supplementing 14 day co-cultures of AFT024 and human cord blood CD34+ cells with the BMP-4 antagonist Noggin, or a neutralising BMP-4 antibody decreased the proportion of cells maintaining a CD34+CD38−CD33− primitive phenotype (by 27.6% and 37.2% respectively), decreased CFU-GM expansion (by 20.6% and 22.2% respectively), and caused a large reduction in net expansion of long-term culture-initiating cells (LTC-IC) (by 31.7% and 61.5% respectively). The ability of BMP4 to support the multipotency and self-renewal of hematopoietic stem cells is consistent with a role recently shown on embryonic stem cells and suggests that it may act generally as a stem cell maintenance factor. Elucidating further the role of HSC growth factors such as BMP-4 in ex vivo culture may lead to development of defined systems for the routine clinical expansion of HSC.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Giovanni Canu ◽  
Christiana Ruhrberg

AbstractHematopoiesis in vertebrate embryos occurs in temporally and spatially overlapping waves in close proximity to blood vascular endothelial cells. Initially, yolk sac hematopoiesis produces primitive erythrocytes, megakaryocytes, and macrophages. Thereafter, sequential waves of definitive hematopoiesis arise from yolk sac and intraembryonic hemogenic endothelia through an endothelial-to-hematopoietic transition (EHT). During EHT, the endothelial and hematopoietic transcriptional programs are tightly co-regulated to orchestrate a shift in cell identity. In the yolk sac, EHT generates erythro-myeloid progenitors, which upon migration to the liver differentiate into fetal blood cells, including erythrocytes and tissue-resident macrophages. In the dorsal aorta, EHT produces hematopoietic stem cells, which engraft the fetal liver and then the bone marrow to sustain adult hematopoiesis. Recent studies have defined the relationship between the developing vascular and hematopoietic systems in animal models, including molecular mechanisms that drive the hemato-endothelial transcription program for EHT. Moreover, human pluripotent stem cells have enabled modeling of fetal human hematopoiesis and have begun to generate cell types of clinical interest for regenerative medicine.


Author(s):  
Wanbo Tang ◽  
Jian He ◽  
Tao Huang ◽  
Zhijie Bai ◽  
Chaojie Wang ◽  
...  

In the aorta-gonad-mesonephros (AGM) region of mouse embryos, pre-hematopoietic stem cells (pre-HSCs) are generated from rare and specialized hemogenic endothelial cells (HECs) via endothelial-to-hematopoietic transition, followed by maturation into bona fide hematopoietic stem cells (HSCs). As HECs also generate a lot of hematopoietic progenitors not fated to HSCs, powerful tools that are pre-HSC/HSC-specific become urgently critical. Here, using the gene knockin strategy, we firstly developed an Hlf-tdTomato reporter mouse model and detected Hlf-tdTomato expression exclusively in the hematopoietic cells including part of the immunophenotypic CD45– and CD45+ pre-HSCs in the embryonic day (E) 10.5 AGM region. By in vitro co-culture together with long-term transplantation assay stringent for HSC precursor identification, we further revealed that unlike the CD45– counterpart in which both Hlf-tdTomato-positive and negative sub-populations harbored HSC competence, the CD45+ E10.5 pre-HSCs existed exclusively in Hlf-tdTomato-positive cells. The result indicates that the cells should gain the expression of Hlf prior to or together with CD45 to give rise to functional HSCs. Furthermore, we constructed a novel Hlf-CreER mouse model and performed time-restricted genetic lineage tracing by a single dose induction at E9.5. We observed the labeling in E11.5 AGM precursors and their contribution to the immunophenotypic HSCs in fetal liver (FL). Importantly, these Hlf-labeled early cells contributed to and retained the size of the HSC pool in the bone marrow (BM), which continuously differentiated to maintain a balanced and long-term multi-lineage hematopoiesis in the adult. Therefore, we provided another valuable mouse model to specifically trace the fate of emerging HSCs during development.


Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4126-4133 ◽  
Author(s):  
Ann C. M. Brun ◽  
Jon Mar Björnsson ◽  
Mattias Magnusson ◽  
Nina Larsson ◽  
Per Leveén ◽  
...  

Abstract Enforced expression of Hoxb4 dramatically increases the regeneration of murine hematopoietic stem cells (HSCs) after transplantation and enhances the repopulation ability of human severe combined immunodeficiency (SCID) repopulating cells. Therefore, we asked what physiologic role Hoxb4 has in hematopoiesis. A novel mouse model lacking the entire Hoxb4 gene exhibits significantly reduced cellularity in spleen and bone marrow (BM) and a subtle reduction in red blood cell counts and hemoglobin values. A mild reduction was observed in the numbers of primitive progenitors and stem cells in adult BM and fetal liver, whereas lineage distribution was normal. Although the cell cycle kinetics of primitive progenitors was normal during endogenous hematopoiesis, defects in proliferative responses of BM Lin- Sca1+ c-kit+ stem and progenitor cells were observed in culture and in vivo after the transplantation of BM and fetal liver HSCs. Quantitative analysis of mRNA from fetal liver revealed that a deficiency of Hoxb4 alone changed the expression levels of several other Hox genes and of genes involved in cell cycle regulation. In summary, the deficiency of Hoxb4 leads to hypocellularity in hematopoietic organs and impaired proliferative capacity. However, Hoxb4 is not required for the generation of HSCs or the maintenance of steady state hematopoiesis.


Blood ◽  
2011 ◽  
Vol 117 (19) ◽  
pp. 5057-5066 ◽  
Author(s):  
Francesca Aguilo ◽  
Serine Avagyan ◽  
Amy Labar ◽  
Ana Sevilla ◽  
Dung-Fang Lee ◽  
...  

Abstract Fetal liver and adult bone marrow hematopoietic stem cells (HSCs) renew or differentiate into committed progenitors to generate all blood cells. PRDM16 is involved in human leukemic translocations and is expressed highly in some karyotypically normal acute myeloblastic leukemias. As many genes involved in leukemogenic fusions play a role in normal hematopoiesis, we analyzed the role of Prdm16 in the biology of HSCs using Prdm16-deficient mice. We show here that, within the hematopoietic system, Prdm16 is expressed very selectively in the earliest stem and progenitor compartments, and, consistent with this expression pattern, is critical for the establishment and maintenance of the HSC pool during development and after transplantation. Prdm16 deletion enhances apoptosis and cycling of HSCs. Expression analysis revealed that Prdm16 regulates a remarkable number of genes that, based on knockout models, both enhance and suppress HSC function, and affect quiescence, cell cycling, renewal, differentiation, and apoptosis to various extents. These data suggest that Prdm16 may be a critical node in a network that contains negative and positive feedback loops and integrates HSC renewal, quiescence, apoptosis, and differentiation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1253-1253
Author(s):  
Xiangen Li ◽  
Carl Simon Shelley ◽  
M. Amin Arnaout

Abstract Several molecular pathways have been identified that regulate distinct stages in the developmental progression from mesoderm to the formation of the hematopoietic and vascular lineages. Our previous work indicated that ectopic expression of the zinc finger transcription factor ZBP-89 promotes hematopoietic lineage development and represses endothelial cell lineage differentiation from hemangioblasts in murine embryonic stem cells. Here we evaluated the functional consequences of stable knockdown of ZBP-89 in embryonic stem cells (ESC) on hematopoietic and vascular development. Stable knock down of ZBP-89 in ESC significantly decreased the number of Blast Colony Forming Cells (BL-CFC) hemangioblasts, as well as primitive and definitive hematopoietic progenitor colonies BFU-E, GM-CFU, G-CFU, M-CFU and GEMM-CFU in vitro. In contrast, sprouting angiogenesis was markedly increased in EB cultures. Flow cytometric analysis of the lineages derived from ZBP-89 deficient EB cultures showed that the early (C-kit+Sca-1+) and definitive (CD45+) hematopoietic stem cells populations were reduced, but the endothelial cell population (CD31+ VE-Cadherin+) was increased. RT-PCR analysis of EB cultures revealed a direct correlation between the expression levels of ZBP-89 and hematopoietic markers (including SCL and Runx1) but an inverse correlation with the vascular marker CD31, with no change in Oct4 expression level. To investigate the mechanism underlying the role of ZBP-89 in hematopoiesis, the effect of ZBP-89 on expression of SCL, a master regulator of hematopoiesis, was examined. The murine SCL promoter transduced into the ZBP-89-expressing MEL cell line drove luciferase gene expression. ZBP-89 knockdown in MEL cells markedly reduced SCL expression. ChIP analysis showed that endogenous ZBP-89 protein bound directly to the murine SCL promoter in MEL cells. Thus ZBP-89 plays a central role in fate determination of hemangioblasts; its induction suppresses angiogenesis but enhances differentiation of hemangioblasts along the hematopoietic pathway, an effect mediated through the regulated expression of SCL.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3568-3568
Author(s):  
Mattias Magnusson ◽  
Melissa Romero ◽  
Sacha Prashad ◽  
Ben Van Handel ◽  
Suvi Aivio ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) ex vivo has been difficult due to limited understanding of their growth requirements and the molecular complexity of their natural microenvironments. To mimic the niches in which human HSCs normally develop and expand during ontogeny, we have derived two unique types of stromal niche cells from the first trimester human placenta and the fetal liver. These lines either support maintenance of multipotential progenitors in culture, or promote differentiation into macrophages. Impressively, the supportive lines facilitate over 50,000-fold expansion of the most immature human HSCs/progenitors (CD34+CD38-Thy1+) during 8-week culture supplemented with minimal cytokines FLT3L, SCF and TPO, whereas the cells cultured on non-supportive stroma or without stroma under the same conditions differentiated within 2 weeks. As the supportive stroma lines also facilitate differentiation of human hematopoietic progenitors into myeloid, erythroid and B-lymphoid lineages, we were able to show that the expanded progenitors preserved full multipotentiality during long-term culture ex vivo. Furthermore, our findings indicate that the supportive stroma lines also direct differentiation of human embryonic stem cells (hESC) into hematopoietic progenitor cells (CD45+CD34+) that generate multiple types of myeloerythroid colonies. These data imply that the unique supportive niche cells can both support hematopoietic specification and sustain a multilineage hematopoietic hierarchy in culture over several weeks. Strikingly, the supportive effect from the unique stromal cells was dominant over the differentiation effect from the non-supportive lines. Even supernatant from the supportive lines was able to partially protect the progenitors that were cultured on the non-supportive lines, whereas mixing of the two types of stroma resulted in sustained preservation of the multipotential progenitors. These results indicate that the supportive stroma cells possess both secreted and surface bound molecules that protect multipotentiality of HSCs. Global gene expression analysis revealed that the supportive stroma lines from both the placenta and the fetal liver were almost identical (r=0.99) and very different from the non-supportive lines that promote differentiation (r=0.34), implying that they represent two distinct niche cell types. Interestingly, the non-supportive lines express known mesenchymal markers such as (CD73, CD44 and CD166), whereas the identity of the supportive cells is less obvious. In summary, we have identified unique human stromal niche cells that may be critical components of the HSC niches in the placenta and the fetal liver. Molecular characterization of these stroma lines may enable us to define key mechanisms that govern the multipotentiality of HSCs.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5055-5055
Author(s):  
Zhenhua Yang ◽  
Hao Jiang

Abstract While stem cells undergo phenotypic and functional changes in development, the capacity of self-renewal and differentiation remains the defining property of stem cells throughout life, indicating certain fundamental regulatory mechanisms underlying these cardinal features of stem cells. A profound transition occurs to hematopoietic stem cells (HSCs) from embryonic to adult hematopoiesis, resulting in pronounced distinctions between fetal liver (FL) and adult bone marrow (BM) HSCs in many aspects. While many studies have documented a different dependence of fetal versus adult HSC function on epigenetic modulators including several Polycomb proteins, little is known about if Trithorax proteins play a similar or different role in fetal versus adult HSC function. More specifically, despite being a prominent epigenetic mark associated with gene activation, the role of H3K4 methylation (an activity of many Trithorax proteins) in different stages of HSCs remains unclear. As the major H3K4 methylases in mammals, the Set1/Mll family complexes play important roles in development and stem cell function, and are extensively associated with diseases including blood cancers. We have previously established a direct role of Dpy30, a core subunit in all Set1/Mll complexes, in facilitating genome-wide H3K4 methylation, and this allows an effective interrogation of the functional role of efficient H3K4 methylation through genetic studies of Dpy30. While dispensable for the self-renewal of embryonic stem cells (ESCs), Dpy30 is crucial for efficient differentiation of ESCs by facilitating the induction of many bivalently marked developmental genes (Jiang et al., Cell, 2011). We have then generated a Dpy30 conditional knockout mouse, and shown that Dpy30 plays a crucial role in the long term maintenance and differentiation of adult BM HSCs, and preferentially controls H3K4 methylation and expression of many hematopoiesis-associated genes in adult BM cells (Yang et al., J Exp Med, accepted). However, the role of Dpy30 and efficient H3K4 methylation in fetal HSCs is still unknown. To study the role of efficient H3K4 methylation in fetal HSCs, we deleted Dpy30 in fetal hematopoietic cells using VavCre line. VavCre; Dpy30F/- fetuses are anemic at E14.5 and E15.5, with reduced H3K4 methylation but significantly increased numbers of FL HSCs. However, these FL HSCs were functionally defective in colony formation and blood reconstitution following transplantation. Proliferation of the progenitors, but not HSCs, was significantly (but modestly) reduced. These results suggest a role of Dpy30 in differentiation of HSCs and progenitor proliferation in FL. We also competitively transplanted Mx1Cre; Dpy30F/- FL and deleted Dpy30 after stable engraftment. Our analysis at an early time point after deletion showed little effect on donor contribution to HSCs, but significant reduction of oligopotent progenitors. Analysis at a later time point after deletion, however, showed marked reduction of all hematopoietic cells including HSCs. These results support a cell-autonomous role of Dpy30 in the differentiation and long term maintenance of FL HSCs. The phenotypes of FL HSCs are largely similar to those of BM HSCs following Dpy30 loss, suggesting that Dpy30 and certain Dpy30 targets are fundamentally important in regulating HSCs regardless of the developmental stages. To identify these targets, we performed RNA-seq analyses for purified FL HSCs from VavCre; Dpy30F/- versus VavCre; Dpy30F/+ littermates. Among hundreds of genes that were significantly changed in FL HSCs, however, only a handful of genes were found to be co-downregulated in both FL and BM HSCs following Dpy30 loss, suggesting that Dpy30 may have different functional targets in different stages of HSCs. To identify Dpy30 targets fundamentally important to HSC regulation, we are now selectively investigating the function of a few common Dpy30 targets in HSCs by colony formation and potentially transplantation assays following their stable knockdown. The similar requirement of Dpy30 in both fetal and adult HSC differentiation as well as long-term maintenance underscores the fundamental importance of this epigenetic modulator in the central properties of stem cells, and studies of the common Dpy30 targets may identify new regulatory genes controlled by this modulator in fetal and adult HSC function. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Guillaume Pourcher ◽  
Christelle Mazurier ◽  
Yé Yong King ◽  
Marie-Catherine Giarratana ◽  
Ladan Kobari ◽  
...  

We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs) of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES) cells or induced pluripotent stem cell (iPS) are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL) as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34+cells. In thisin vitromodel, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i) displayed a dramaticin vitroexpansion (100-fold more when compared to CB CD34+) and (ii) 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10–15% cloning efficiency for adult CD34+cells. This work supports the idea that FL remains a model of study and is not a candidate forex vivoRBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.


Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2570-2574 ◽  
Author(s):  
Julia A. Alberta ◽  
Gregory M. Springett ◽  
Helen Rayburn ◽  
Thomas A. Natoli ◽  
Janet Loring ◽  
...  

The WT1 tumor-suppressor gene is expressed by many forms of acute myeloid leukemia. Inhibition of this expression can lead to the differentiation and reduced growth of leukemia cells and cell lines, suggesting that WT1 participates in regulating the proliferation of leukemic cells. However, the role of WT1 in normal hematopoiesis is not well understood. To investigate this question, we have used murine cells in which the WT1 gene has been inactivated by homologous recombination. We have found that cells lacking WT1 show deficits in hematopoietic stem cell function. Embryonic stem cells lacking WT1, although contributing efficiently to other organ systems, make only a minimal contribution to the hematopoietic system in chimeras, indicating that hematopoietic stem cells lacking WT1 compete poorly with healthy stem cells. In addition, fetal liver cells lacking WT1 have an approximately 75% reduction in erythroid blast-forming unit (BFU-E), erythroid colony-forming unit (CFU-E), and colony-forming unit–granulocyte macrophage–erythroid–megakaryocyte (CFU-GEMM). However, transplantation of fetal liver hematopoietic cells lackingWT1 will repopulate the hematopoietic system of an irradiated adult recipient in the absence of competition. We conclude that the absence of WT1 in hematopoietic cells leads to functional defects in growth potential that may be of consequence to leukemic cells that have alterations in the expression of WT1.


Sign in / Sign up

Export Citation Format

Share Document