scholarly journals T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies

Blood ◽  
2011 ◽  
Vol 117 (16) ◽  
pp. 4304-4314 ◽  
Author(s):  
Donald R. Shaffer ◽  
Barbara Savoldo ◽  
Zhongzhen Yi ◽  
Kevin K. H. Chow ◽  
Sunitha Kakarla ◽  
...  

AbstractT-cell therapy with genetically modified T cells targeting CD19 or CD20 holds promise for the immunotherapy of hematologic malignancies. These targets, however, are only present on B cell–derived malignancies, and because they are broadly expressed in the hematopoietic system, their targeting may have unwanted consequences. To expand T-cell therapies to hematologic malignancies that are not B cell–derived, we determined whether T cells can be redirected to CD70, an antigen expressed by limited subsets of normal lymphocytes and dendritic cells, but aberrantly expressed by a broad range of hematologic malignancies and some solid tumors. To generate CD70-specific T cells, we constructed a chimeric antigen receptor (CAR) consisting of the CD70 receptor (CD27) fused to the CD3-ζ chain. Stimulation of T cells expressing CD70-specific CARs resulted in CD27 costimulation and recognition of CD70-positive tumor cell lines and primary tumor cells, as shown by IFN-γ and IL-2 secretion and by tumor cell killing. Adoptively transferred CD70-specific T cells induced sustained regression of established murine xenografts. Therefore, CD70-specific T cells may be a promising immunotherapeutic approach for CD70-positive malignancies.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4032-4032
Author(s):  
Hannah S C Karlsson ◽  
Camilla Lindqvist ◽  
Gabriella Paul-Wetterberg ◽  
Helena Jernberg Wiklund ◽  
Kenneth Nilsson ◽  
...  

Abstract Abstract 4032 Introduction: T cells expressing tumor-targeting chimeric antigen receptors are showing promise in clinical trials for patients with B cell leukemia and lymphoma. However, increased levels of anti-apoptotic proteins, a common trait among B-cell tumors, may hamper treatment efficacy. ABT-737 is a small molecule inhibitor of anti-apoptotic proteins such as BCL-2, BCL-xL, BCL-w, and MCL-1, which induces apoptosis via the intrinsic apoptosis pathway in contrast to T-cells that utilize the extrinsic pathway controlled by death receptors and their ligands. ABT-737 has been shown to efficiently promote apoptosis in B-cell tumors as exemplified in models of pre-B-ALL. Recently, ABT-737 was shown to synergize with TRAIL to induce apoptosis. This prompted us to investigate if ABT-737 could be combined with T-cell therapy to enhance tumor cell death. Methods: PBMCs from healthy donors and patients with pre-B-ALL was genetically engineered with a second generation chimeric antigen receptor (CAR) targeting CD19 on B-cells. The T-cells and ABT-737 were tested both individually, and in combination, for their cytotoxic capacity in in vitro assays such as flow cytometry and the Caspase-Glo® 3/7 assay. The effects were studied in a panel of B-cell tumor cell lines (Daudi, U698, Karpas422, DG75, Nall-1) since they may exhibit different apoptosis resistance profiles. The expression of anti-apoptosis molecules in these cell lines was investigated by PCR. Results: PCR confirmed expression of BCL family proteins in the cell lines tested. CD19-targeting T-cells specifically induced apoptosis in CD19+ tumor cells. Similarly, but less efficiently, ABT-737 as single agent increased apoptosis in the various tumor cell lines. When combining T-cell and ABT-737 therapy, the tumor cell death was significantly increased to that of single agent treatment. The effect varied from additive to synergistic effects. The tumor cell lines did not change the level of antigen presenting molecules (MHC I and II), death receptors (Fas) or adhesion or costimulatory molecules (ICAM-I, CD80, CD86) upon ABT-737 treatment. Hence, the effect did not likely represent increased killing by enhanced physical interaction between T-cells and tumors but rather simultaneous engagement of both intrinsic and extrinsic apoptosis pathways. Conclusion: The apoptosis inducer ABT-737 is potently enhancing CD19-targeting T-cell therapy. By triggering both intrinsic and extrinsic apoptosis pathways also resistant tumors may succumb to treatment. Disclosures: Simonsson: Novartis, BMS, Merck, Pfizer: Consultancy, Honoraria.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14069-e14069
Author(s):  
Priya Hays

e14069 Background: Immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapies have emerged as approaches to treat B-cell malignancies. Methods: PubMed/NCBI/MEDLINE databases were accessed with keywords "immune checkpoint inhibitors and B-cell malignancies" "CAR T-cell and B-cell malignancies", and various permutations including "clinical data" "toxicities", "reviews", "quality of life", and "adverse effects". Results: The first-in-class approved immune checkpoint inhibitor was ipilimumab, which is a fully humanized mAb that blocks the immunosuppressive signal by cytotoxic T-lymphocyte antigen. Thereafter, nivolumab was also approved for use in the treatment of Hodgkin's lymphoma in 2016. In phase I, open-label, dose-escalation, cohort-expansion study, patients with relapsed or refractory B-cell lymphoma received the anti-PD-1 monoclonal antibody nivolumab. Eighty-one patients were treated and drug-related adverse events occurred in 51 (63%) patients. Objective response rates were 40%, 36%, 15%, and 40% among patients with follicular lymphoma and other hematologic malignancies. Clinical trial results describing CD19-targeted CAR T-cell therapy of patients with relapsed B-ALL were published in 2015. In this study, all five patients treated with CAR T cells achieved minimal residual disease negative complete remission. Updated results describing the treatment of 16 patients with relapsed or refractory B-ALL treated with CAR T cells were published: the overall CR rate in this trial was 88% and 12 of 14 patients were classified as minimal residual disease negative. 44% of these patients went on to standard-of- care allogeneic hematopoietic stem cell transplant. Initial studies also reported potent anti-leukemic effects of CD19 CAR T cell therapy in three patients with refractory chronic lymphocytic leukemia where two of the three patients achieved MRD-CR. Infused CAR T cells proliferated up to 10,000-fold and persisted in recipients for at least 6 months and shown to retain antitumor activity after six months. Costs for CAR T-cell therapies remain exorbitant, reaching over $1M (USD) per patient. Conclusions: Clinical data reveal safety and efficacy, and also associated toxicities for both approaches.


2021 ◽  
Vol 12 ◽  
Author(s):  
Preethi Bala Balakrishnan ◽  
Elizabeth E. Sweeney

Adoptive T cell therapy has emerged as a revolutionary immunotherapy for treating cancer. Despite immense promise and clinical success in some hematologic malignancies, limitations remain that thwart its efficacy in solid tumors. Particularly in tumors of the central nervous system (CNS), T cell therapy is often restricted by the difficulty in intratumoral delivery across anatomical niches, suboptimal T cell specificity or activation, and intratumoral T cell dysfunction due to immunosuppressive tumor microenvironments (TMEs). Nanoparticles may offer several advantages to overcome these limitations of T cell therapy, as they can be designed to robustly and specifically activate T cells ex vivo prior to adoptive transfer, to encapsulate T cell stimulating agents for co-localized stimulation, and to be conjugated onto T cells for added functionality. This perspective highlights recent preclinical advances in using nanoparticles to enhance T cell therapy, and discusses the potential applicability and constraints of nanoparticle-enhanced T cells as a new platform for treating CNS tumors.


Antibodies ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 25
Author(s):  
Violet Y. Tu ◽  
Asma Ayari ◽  
Roddy S. O’Connor

T cell therapies, including CAR T cells, have proven more effective in hematologic malignancies than solid tumors, where the local metabolic environment is distinctly immunosuppressive. In particular, the acidic and hypoxic features of the tumor microenvironment (TME) present a unique challenge for T cells. Local metabolism is an important consideration for activated T cells as they undergo bursts of migration, proliferation and differentiation in hostile soil. Tumor cells and activated T cells both produce lactic acid at high rates. The role of lactic acid in T cell biology is complex, as lactate is an often-neglected carbon source that can fuel TCA anaplerosis. Circulating lactate is also an important means to regulate redox balance. In hypoxic tumors, lactate is immune-suppressive. Here, we discuss how intrinsic- (T cells) as well as extrinsic (tumor cells and micro-environmental)-derived metabolic factors, including lactate, suppress the ability of antigen-specific T cells to eradicate tumors. Finally, we introduce recent discoveries that target the TME in order to potentiate T cell-based therapies against cancer.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3921-3921 ◽  
Author(s):  
Cesar Sommer ◽  
Hsin-Yuan Cheng ◽  
Yik Andy Yeung ◽  
Duy Nguyen ◽  
Janette Sutton ◽  
...  

Autologous chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B-cell leukemias, lymphomas and multiple myeloma, raising interest in using CAR T cell therapies in AML. These therapies are produced using a patient's own T cells, an approach that has inherent challenges, including requiring significant time for production, complex supply chain logistics, separate GMP manufacturing for each patient, and variability in performance of patient-derived cells. Given the rapid pace of disease progression combined with limitations associated with the autologous approach and treatment-induced lymphopenia, many patients with AML may not receive treatment. Allogeneic CAR T (AlloCAR T) cell therapies, which utilize cells from healthy donors, may provide greater convenience with readily available off-the-shelf CAR T cells on-demand, reliable product consistency, and accessibility at greater scale for more patients. To create an allogeneic product, the TRAC and CD52 genes are inactivated in CAR T cells using Transcription Activator-Like Effector Nuclease (TALEN®) technology. These genetic modifications are intended to minimize the risk of graft-versus-host disease and to confer resistance to ALLO-647, an anti-CD52 antibody that can be used as part of the conditioning regimen to deplete host alloreactive immune cells potentially leading to increased persistence and efficacy of the infused allogeneic cells. We have previously described the functional screening of a library of anti-FLT3 single-chain variable fragments (scFvs) and the identification of a lead FLT3 CAR with optimal activity against AML cells and featuring an off-switch activated by rituximab. Here we characterize ALLO-819, an allogeneic FLT3 CAR T cell product, for its antitumor efficacy and expansion in orthotopic models of human AML, cytotoxicity in the presence of soluble FLT3 (sFLT3), performance compared with previously described anti-FLT3 CARs and potential for off-target binding of the scFv to normal human tissues. To produce ALLO-819, T cells derived from healthy donors were activated and transduced with a lentiviral construct for expression of the lead anti-FLT3 CAR followed by efficient knockout of TRAC and CD52. ALLO-819 manufactured from multiple donors was insensitive to ALLO-647 (100 µg/mL) in in vitro assays, suggesting that it would avoid elimination by the lymphodepletion regimen. In orthotopic models of AML (MV4-11 and EOL-1), ALLO-819 exhibited dose-dependent expansion and cytotoxic activity, with peak CAR T cell levels corresponding to maximal antitumor efficacy. Intriguingly, ALLO-819 showed earlier and more robust peak expansion in mice engrafted with MV4-11 target cells, which express lower levels of the antigen relative to EOL-1 cells (n=2 donors). To further assess the potency of ALLO-819, multiple anti-FLT3 scFvs that had been described in previous reports were cloned into lentiviral constructs that were used to generate CAR T cells following the standard protocol. In these comparative studies, the ALLO-819 CAR displayed high transduction efficiency and superior performance across different donors. Furthermore, the effector function of ALLO-819 was equivalent to that observed in FLT3 CAR T cells with normal expression of TCR and CD52, indicating no effects of TALEN® treatment on CAR T cell activity. Plasma levels of sFLT3 are frequently increased in patients with AML and correlate with tumor burden, raising the possibility that sFLT3 may act as a decoy for FLT3 CAR T cells. To rule out an inhibitory effect of sFLT3 on ALLO-819, effector and target cells were cultured overnight in the presence of increasing concentrations of recombinant sFLT3. We found that ALLO-819 retained its killing properties even in the presence of supraphysiological concentrations of sFLT3 (1 µg/mL). To investigate the potential for off-target binding of the ALLO-819 CAR to human tissues, tissue cross-reactivity studies were conducted using a recombinant protein consisting of the extracellular domain of the CAR fused to human IgG Fc. Consistent with the limited expression pattern of FLT3 and indicative of the high specificity of the lead scFv, no appreciable membrane staining was detected in any of the 36 normal tissues tested (n=3 donors). Taken together, our results support clinical development of ALLO-819 as a novel and effective CAR T cell therapy for the treatment of AML. Disclosures Sommer: Allogene Therapeutics, Inc.: Employment, Equity Ownership. Cheng:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Yeung:Pfizer Inc.: Employment, Equity Ownership. Nguyen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Sutton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Melton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Valton:Cellectis, Inc.: Employment, Equity Ownership. Poulsen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Djuretic:Pfizer, Inc.: Employment, Equity Ownership. Van Blarcom:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Chaparro-Riggers:Pfizer, Inc.: Employment, Equity Ownership. Sasu:Allogene Therapeutics, Inc.: Employment, Equity Ownership.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A234-A234
Author(s):  
Rebecca Larson ◽  
Michael Kann ◽  
Stefanie Bailey ◽  
Nicholas Haradhvala ◽  
Kai Stewart ◽  
...  

BackgroundChimeric Antigen Receptor (CAR) therapy has had a transformative impact on the treatment of hematologic malignancies1–6 but success in solid tumors remains elusive. We hypothesized solid tumors have cell-intrinsic resistance mechanisms to CAR T-cell cytotoxicity.MethodsTo systematically identify resistance pathways, we conducted a genome-wide CRISPR knockout screen in glioblastoma cells, a disease where CAR T-cells have had limited efficacy.7 8 We utilized the glioblastoma cell line U87 and targeted endogenously expressed EGFR with CAR T-cells generated from 6 normal donors for the screen. We validated findings in vitro and in vivo across a variety of human tumors and CAR T-cell antigens.ResultsLoss of genes in the interferon gamma receptor (IFNγR) signaling pathway (IFNγR1, JAK1, JAK2) rendered U87 cells resistant to CAR T-cell killing in vitro. IFNγR1 knockout tumors also showed resistance to CAR T cell treatment in vivo in a second glioblastoma line U251 in an orthotopic model. This phenomenon was irrespective of CAR target as we also observed resistance with IL13Ralpha2 CAR T-cells. In addition, resistance to CAR T-cell cytotoxicity through loss of IFNγR1 applied more broadly to solid tumors as pancreatic cell lines targeted with either Mesothelin or EGFR CAR T-cells also showed resistance. However, loss of IFNγR signaling did not impact sensitivity of liquid tumor lines (leukemia, lymphoma or multiple myeloma) to CAR T-cells in vitro or in an orthotopic model of leukemia treated with CD19 CAR. We isolated the effects of decreased cytotoxicity of IFNγR1 knockout glioblastoma tumors to be cancer-cell intrinsic because CAR T-cells had no observable differences in proliferation, activation (CD69 and LFA-1), or degranulation (CD107a) when exposed to wildtype versus knockout tumors. Using transcriptional profiling, we determined that glioblastoma cells lacking IFNγR1 had lower upregulation of cell adhesion pathways compared to wildtype glioblastoma cells after exposure to CAR T-cells. We found that loss of IFNγR1 reduced CAR T-cell binding avidity to glioblastoma.ConclusionsThe critical role of IFNγR signaling for susceptibility of solid tumors to CAR T-cells is surprising given that CAR T-cells do not require traditional antigen-presentation pathways. Instead, in glioblastoma tumors, IFNγR signaling was required for sufficient adhesion of CAR T-cells to mediate productive cytotoxicity. Our work demonstrates that liquid and solid tumors differ in their interactions with CAR T-cells and suggests that enhancing T-cell/tumor interactions may yield improved responses in solid tumors.AcknowledgementsRCL was supported by T32 GM007306, T32 AI007529, and the Richard N. Cross Fund. ML was supported by T32 2T32CA071345-21A1. SRB was supported by T32CA009216-38. NJH was supported by the Landry Cancer Biology Fellowship. JJ is supported by a NIH F31 fellowship (1F31-MH117886). GG was partially funded by the Paul C. Zamecnik Chair in Oncology at the Massachusetts General Hospital Cancer Center and NIH R01CA 252940. MVM and this work is supported by the Damon Runyon Cancer Research Foundation, Stand Up to Cancer, NIH R01CA 252940, R01CA238268, and R01CA249062.ReferencesMaude SL, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439–448.Neelapu SS, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531–2544.Locke FL, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. The Lancet Oncology 2019;20:31–42.Schuster SJ, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017;377:2545–2554.Wang M, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020;382:1331–1342.Cohen AD, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019;129:2210–2221.Bagley SJ, et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro-oncology 2018;20:1429–1438.Choi BD, et al. Engineering chimeric antigen receptor T cells to treat glioblastoma. J Target Ther Cancer 2017;6:22–25.Ethics ApprovalAll human samples were obtained with informed consent and following institutional guidelines under protocols approved by the Institutional Review Boards (IRBs) at the Massachusetts General Hospital (2016P001219). Animal work was performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) (2015N000218 and 2020N000114).


Author(s):  
Aaron J Harrison ◽  
Xin Du ◽  
Bianca von Scheidt ◽  
Michael H Kershaw ◽  
Clare Y Slaney

Abstract Co-stimulation is a fundamental component of T cell biology and plays a key role in determining the quality of T cell proliferation, differentiation and memory formation. T cell-based immunotherapies, such as chimeric antigen receptor (CAR) T cell immunotherapy, are no exception. Solid tumours have largely been refractory to CAR T cell therapy owing to an immunosuppressive microenvironment which limits CAR T cell persistence and effector function. In order to eradicate solid cancers, increasingly sophisticated strategies are being developed to deliver these vital co-stimulatory signals to CAR T cells, often specifically within the tumour microenvironment. These include designing novel co-stimulatory domains within the CAR or other synthetic receptors, arming CAR T cells with cytokines or using CAR T cells in combination with agonist antibodies. This review discusses the evolving role of co-stimulation in CAR T cell therapies and the strategies employed to target co-stimulatory pathways in CAR T cells, with a view to improve responses in solid tumours.


Sign in / Sign up

Export Citation Format

Share Document