scholarly journals A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo

Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4600-4608 ◽  
Author(s):  
Kathleen E. McGrath ◽  
Jenna M. Frame ◽  
George J. Fromm ◽  
Anne D. Koniski ◽  
Paul D. Kingsley ◽  
...  

Abstract A transient erythromyeloid wave of definitive hematopoietic progenitors (erythroid/myeloid progenitors [EMPs]) emerges in the yolk sac beginning at embryonic day 8.25 (E8.25) and colonizes the liver by E10.5, before adult-repopulating hematopoietic stem cells. At E11.5, we observe all maturational stages of erythroid precursors in the liver and the first definitive erythrocytes in the circulation. These early fetal liver erythroblasts express predominantly adult β-globins and the definitive erythroid-specific transcriptional modifiers c-myb, Sox6, and Bcl11A. Surprisingly, they also express low levels of “embryonic” βH1-, but not εy-, globin transcripts. Consistent with these results, RNA polymerase and highly modified histones are found associated with βH1- and adult globin, but not εy-globin, genes. E11.5 definitive proerythroblasts from mice transgenic for the human β-globin locus, like human fetal erythroblasts, express predominately human γ-, low β-, and no ε-globin transcripts. Significantly, E9.5 yolk sac–derived EMPs cultured in vitro have similar murine and human transgenic globin expression patterns. Later liver proerythroblasts express low levels of γ-globin, while adult marrow proerythroblasts express only β-globin transcripts. We conclude that yolk sac–derived EMPs, the first of 2 origins of definitive erythropoiesis, express a unique pattern of globin genes as they generate the first definitive erythrocytes in the liver of the mammalian embryo.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 228-228
Author(s):  
Kathleen E McGrath ◽  
James Palis ◽  
Katherine H. Fegan ◽  
Seana C Catherman

Abstract The first progenitors with granulocyte potential arise in the murine yolk sac beginning at embryonic day 8.5 (E8.5), 48 hours before hematopoietic stem cells (HSCs) are formed. These granulocyte progenitors are part of a wave of definitive erythro-myeloid progenitors (EMPs) that display a unique immunophenotype. By E10.5, we observe EMPs in the bloodstream and enriched in the liver, the site of fetal hematopoiesis, consistent with previous reports of GM-CFC presence in the early embryo. HSCs begin to colonize the fetal liver between E11.5 and E12.5, where they subsequently expand and differentiate. Thus, the presence of maturing blood cells at this time-point likely represent the output of EMP that colonize the fetal liver before HSCs. In vitro culture of purified EMPs results in the complete myeloid repertoire found in the adult, including neutrophils, basophils, eosinophils and mast cells. To see which of these potentials is actually realized in the embryo, we examined myelopoiesis in the liver at E11.5- E12.5. There was no morphological evidence of eosinophils, basophils or mast cells in the early fetal liver, and there were no lineage specific transcripts for these cells types (EPX, FCepsilonR) detected by qPCR before E15.5. However, rare cells with neutrophil morphology were found in the fetal liver and in the bloodstream at E12.5. We utilized flow cytometry to enumerate granulocytes (GF1+, Mac1+) in both liver and the bloodstream during early embryogenesis. In order to rule out contamination from maternal cells, we analyzed embryos generated from GFP+ male mice mated with wild-type females. Per embryo equivalent, we consistently found a small number of granulocytes already present in both fetal liver and circulation at E11.5. The number of granulocytes increases to over one hundred at E12.5 and thousands by E13.5. We used imaging flow cytometry to examine the maturational state of the granulocytes in the fetal liver. Consistent with their recent differentiation, fetal liver granulocytes were predominately at the most immature stages as compared to bone marrow samples. Interestingly, at E11.5 and E12.5, a large proportion the circulating granulocytes were maternal derived (GFP-). The presence of these maternal granulocytes could not be accounted for by contamination of maternal blood given the levels of maternal RBCs in the samples. These data indicate that both maternal- and embryonic EMP-derived neutrophils co-circulate in the early embryo. Furthermore, when fetal blood was stimulated with bacteria-like BioParticles, fetal derived (GFP+) and maternal granulocytes (GFP-) each responded with oxidative bursts. Taken together, these data indicate that the early mammalian embryo utilizes both yolk sac-derived transient definitive progenitors and maternal granulocytes to provide host defense before HSC-derived hematopoiesis is established. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 870-876 ◽  
Author(s):  
Xue-Song Liu ◽  
Xi-Hua Li ◽  
Yi Wang ◽  
Run-Zhe Shu ◽  
Long Wang ◽  
...  

Abstract Palladin was originally found up-regulated with NB4 cell differentiation induced by all-trans retinoic acid. Disruption of palladin results in neural tube closure defects, liver herniation, and embryonic lethality. Here we further report that Palld−/− embryos exhibit a significant defect in erythropoiesis characterized by a dramatic reduction in definitive erythrocytes derived from fetal liver but not primitive erythrocytes from yolk sac. The reduction of erythrocytes is accompanied by increased apoptosis of erythroblasts and partial blockage of erythroid differentiation. However, colony-forming assay shows no differences between wild-type (wt) and mutant fetal liver or yolk sac in the number and size of colonies tested. In addition, Palld−/− fetal liver cells can reconstitute hematopoiesis in lethally irradiated mice. These data strongly suggest that deficient erythropoiesis in Palld−/− fetal liver is mainly due to a compromised erythropoietic microenvironment. As expected, erythroblastic island in Palld−/− fetal liver was found disorganized. Palld−/− fetal liver cells fail to form erythroblastic island in vitro. Interestingly, wt macrophages can form such units with either wt or mutant erythroblasts, while mutant macrophages lose their ability to bind wt or mutant erythroblasts. These data demonstrate that palladin is crucial for definitive erythropoiesis and erythroblastic island formation and, especially, required for normal function of macrophages in fetal liver.


Blood ◽  
2011 ◽  
Vol 117 (9) ◽  
pp. 2708-2717 ◽  
Author(s):  
Samantha J. England ◽  
Kathleen E. McGrath ◽  
Jenna M. Frame ◽  
James Palis

Abstract In the hematopoietic hierarchy, only stem cells are thought to be capable of long-term self-renewal. Erythroid progenitors derived from fetal or adult mammalian hematopoietic tissues are capable of short-term, or restricted (102- to 105-fold), ex vivo expansion in the presence of erythropoietin, stem cell factor, and dexamethasone. Here, we report that primary erythroid precursors derived from early mouse embryos are capable of extensive (106- to 1060-fold) ex vivo proliferation. These cells morphologically, immunophenotypically, and functionally resemble proerythroblasts, maintaining both cytokine dependence and the potential, despite prolonged culture, to generate enucleated erythrocytes after 3-4 maturational cell divisions. This capacity for extensive erythroblast self-renewal is temporally associated with the emergence of definitive erythropoiesis in the yolk sac and its transition to the fetal liver. In contrast, hematopoietic stem cell-derived definitive erythropoiesis in the adult is associated almost exclusively with restricted ex vivo self-renewal. Primary primitive erythroid precursors, which lack significant expression of Kit and glucocorticoid receptors, lack ex vivo self-renewal capacity. Extensively self-renewing erythroblasts, despite their near complete maturity within the hematopoietic hierarchy, may ultimately serve as a renewable source of red cells for transfusion therapy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1170-1170
Author(s):  
Orna Steinberg Shemer ◽  
Marta Byrska-Bishop ◽  
Jacob C Ulirsch ◽  
Osheiza Abdulmalik ◽  
Yu Yao ◽  
...  

Abstract Mammalian erythropoiesis during embryogenesis occurs in several distinct stages or "waves" that vary according to timing, site of production, gene expression and physiology. The ontogeny of mammalian erythropoiesis is most thoroughly studied in mice where the earliest circulating erythroblasts released from the yolk sac are termed primitive. Later, the first definitive erythroid lineage is established by erythro-myeloid progenitors (EMPs) that originate in the yolk sac and migrate to the fetal liver for terminal differentiation. A second wave of definitive erythropoiesis is established from hematopoietic stem/progenitor cells that originate in the dorsal aorta and migrate to later stage fetal liver for terminal differentiation. Finally around birth, definitive erythropoiesis shifts to the bone marrow. The ontogeny of erythropoiesis overlaps in mice and humans, although less is known about the latter, as hematopoietic tissues from precisely staged early human embryos are difficult to obtain. We hypothesized that the initial steps of human erythroid ontogeny could be recapitulated by induced pluripotent stem cells (iPSCs) induced to undergo hematopoietic differentiation. We used a serum- and feeder-free protocol to differentiate iPSCs into embryoid bodies (EBs) that produced two sequential waves of distinctly different erythroid precursors. At day 8 of differentiation, EBs began to release hematopoietic precursors. Thereafter, erythroid precursors were released from the EBs in the presence of stem cell factor (SCF), erythropoietin (EPO) and insulin-like growth factor 1 (IGF-1). Erythroid precursors produced during wave 1 (days 12-23 of differentiation) were relatively large and expressed embryonic-type globins (zeta and epsilon), resembling those produced during primitive erythropoiesis. In contrast, wave 2 erythroblasts (day 27 and later) were smaller and expressed mainly gamma and alpha globins with some beta globin, suggestive of fetal-type definitive erythropoiesis. To investigate further the similarity of wave 1 and wave 2 erythroblasts to cells at the primitive and definitive stages of ontogeny, respectively, we used Affymetrix Genechips to analyze the global transcriptomes of stage-matched (CD235+ CD71high) cells. As primary human primitive erythroblasts were not available for comparison, we compared the transcriptomes from the iPSC-derived erythroblasts with those of primary murine definitive and primitive erythroblasts that were flow cytometry-purified from embryonic day 15.5 (E15.5) fetal liver and E10.5 bloodstream, respectively. The comparisons showed that wave 1 erythroblasts from human pluripotent cells resembled more closely the erythroid primitive lineage from mice, while wave 2 erythroblasts from the human cells resembled the erythroid definitive lineage of mice (P-value < 0.05 by a modified Kolmogorov-Smirnov test). For example, SOX6 and BCL11A, preferentially expressed during definitive erythropoiesis, were expressed at relatively high levels in wave 2 erythroblasts. In addition, gene set enrichment analysis (GSEA) demonstrated that wave 2 human iPSC-derived erythroblasts and primary murine definitive erythroblasts expressed numerous genes related to immune/inflammatory pathways that were shown previously to be important for the formation of definitive hematopoietic stem and progenitor cells in zebrafish and mouse embryos. Our findings demonstrate that human iPSC-derived embryoid bodies recapitulate early stages of erythroid ontogeny with respect to the timing of emerging lineages and their gene expression. Additionally, gene expression studies of human iPSC-derived primitive and definitive erythroblasts indicate inflammatory signaling as a potential regulator of the later stage of erythroid development. Disclosures No relevant conflicts of interest to declare.


Development ◽  
1992 ◽  
Vol 116 (3) ◽  
pp. 783-797 ◽  
Author(s):  
S. Cereghini ◽  
M.O. Ott ◽  
S. Power ◽  
M. Maury

The homeoproteins HNF1 (LFB1/HNF1-A) and vHNF1 (LFB3/HNF1 beta) interact with an essential control element of a group of liver-specific genes. During development, these putative target genes are initially expressed in the visceral endoderm of the yolk sac and subsequently in fetal liver. To assess the possible involvement of HNF1 and/or vHNF1 as transcriptional regulators in the early steps of visceral endoderm differentiation, we have analyzed the expression pattern of both factors both in vitro during differentiation of murine F9 embryonal carcinoma cells and in vivo during early postimplantation mouse development. We show here that differentiation of F9 cells into either visceral or parietal endoderm is accompanied by a sharp induction in vHNF1 mRNA and protein. By contrast, only low levels of aberrantly sized HNF1 transcripts, but not DNA-binding protein, are found in F9 cells and its differentiated derivatives. At 6–7.5 days of gestation, high levels of vHNF1 mRNA are present in the visceral extraembryonic endoderm, which co-localize with transcripts of the transthyretin gene. HNF1 transcripts are first detected in the yolk sac roughly two embryonic days later, after the developmental onset of transcription of target genes. As development proceeds, discrepancies are observed between the level of transcripts of both vHNF1 and HNF1 and their respective nuclear binding proteins, notably in the yolk sac and embryonic kidney. In addition, we show that two alternative spliced isoforms of vHNF1 mRNA, vHNF-A and vHNF1-B, are expressed in both embryonic and adult tissues. Taken together, these data suggest that vHNF1 participates as a regulatory factor in the initial transcriptional activation of the target genes in the visceral endoderm of the yolk sac, whereas the later appearance of HNF1 could be required for maintenance of their expression. Our results also provide evidence of a posttranscriptional level of control of vHNF1 and HNF1 gene expression during development, in addition to the spatial restriction in transcription.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1315-1323 ◽  
Author(s):  
C.P. Liu ◽  
R. Auerbach

Mature T cells are derived from prethymic stem cells, which arise at one or more extrathymic sites and enter and differentiate in the thymus. The nature of these prethymic stem cells is a critical factor for the formation of the T-cell repertoire. Although the bone marrow of adult mice can provide such stem cells, their origin during murine embryogenesis is still undetermined. Among potential sites for these progenitor cells are the fetal liver and the embryonic yolk sac. Our studies focus on the yolk sac, both because the yolk sac appears earlier than any other proposed site, and because the mammalian yolk sac is the first site of hematopoiesis. Although it has been shown that the yolk sac in midgestation contains stem cells that can enter the thymic rudiment and differentiate toward T-cell lineage, our aim was to analyze the developmental potential of cells in the yolk sac from earlier stages, prior to the formation of the liver and any other internal organ. We show here that the yolk sac from 8- and 9-day embryos (2–9 and 13–19 somites, respectively) can reconstitute alymphoid congenic fetal thymuses and acquire mature T-cell-specific characteristics. Specifically, thymocytes derived from the early embryonic yolk sac can progress to the expression of mature T lymphocyte markers including CD3/T-cell receptor (TCR), CD4 and CD8. In contrast, we have been unable to document the presence of stem cells within the embryo itself at these early stages. These results support the hypothesis that the stem cells capable of populating the thymic rudiment originate in the yolk sac, and that their presence as early as at the 2- to 9-somite stage may indicate that prethymic stem cells found elsewhere in the embryo at later times may have been derived by migration from this extra-embryonic site. Our experimental design does not exclude the possibility of multiple origins of prethymic stem cells of which the yolk sac may provide the first wave of stem cells in addition to other later waves of cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2539-2539
Author(s):  
Kathleen E. McGrath ◽  
Jenna M Frame ◽  
George Fromm ◽  
Anne D Koniski ◽  
Paul D Kingsley ◽  
...  

Abstract Abstract 2539 Poster Board II-516 A transient wave of primitive erythropoiesis begins at embryonic day 7.5 (E7.5) in the mouse as yolk sac-derived primitive erythroid progenitors (EryP-CFC) generate precursors that mature in the circulation and expand in numbers until E12.5. A second wave of erythroid progenitors (BFU-E) originates in the yolk sac beginning at E8.25 that generate definitive erythroid cells in vitro. These BFU-E colonize the newly forming liver beginning at E10.5, prior to the initial appearance there of adult-repopulating hematopoietic stem cells (HSCs) between E11.5-12.5. This wave of definitive erythroid yolk sac progenitors is proposed to be the source of new blood cells required by the growing embryo after the expansion of primitive erythroid cells has ceased and before HSC-derived hematopoiesis can fulfill the erythropoietic needs of the embryo. We utilized multispectral imaging flow cytometry both to distinguish erythroid lineages and to define specific stages of erythroid precursor maturation in the mouse embryo. Consistent with this model, we found that small numbers of definitive erythrocytes first enter the embryonic circulation beginning at E11.5. All maturational stages of erythroid precursors were observed in the E11.5 liver, consistent with these first definitive erythrocytes having rapidly completed their maturation in the liver. The expression of βH1 and εy-beta globin genes is thought to be limited to primitive erythroid cells. Surprisingly, examination of globin gene expression by in situ hybridization revealed high levels of βH1-, but not εy-globin, transcripts in the parenchyma of E11.5-12.5 livers. RT-PCR analysis of globin mRNAs confirmed the expression of βH1- and adult β1-, but not εy-globin, in E11.5 liver-derived definitive (ckit+, Ter119lo) proerythroblasts sorted by flow cytometry to remove contaminating primitive (ckit-, Ter119+) erythroid cells. A similar pattern of globin gene expression was found in individual definitive erythroid colonies derived from E9.5 yolk sac and from early fetal liver. In vitro differentiation of definitive erythroid progenitors from E9.5 yolk sac revealed a maturational “switch” from βH1- and β1-globins to predominantly β1-globin. βH1-globin transcripts were not observed in proerythroblasts from bone marrow or E16.5 liver or in erythroid colonies from later fetal liver. ChIP analysis revealed that hyperacetylated domains encompass all beta globin genes in primitive erythroid cells but only the adult β1- and β2-globin genes in E16.5 liver proerythroblasts. Consistent with their unique gene expression, E11.5 liver proerythroblasts have hyperacetylated domains encompassing the βh1-, β1- and β2-, but not εy-globin genes. We also examined human globin transgene expression in mice carrying a single copy of the human beta globin locus. Because of the overlapping presence and changing proportion of primitive and definitive erythroid cells during development, we analyzed sorted cell populations whose identities were confirmed by murine globin gene expression. We confirmed that primitive erythroid cells express higher levels of γ- than ε-globin and little β-globin. E11.5 proerythroblasts and cultured E9.5 progenitors express γ- and β-, but not ε-globin. E16.5 liver proerythroblasts express β- and low levels of γ-globin, while adult marrow proerythroblasts express only β-globin transcripts. In summary, two forms of definitive erythropoiesis emerge in the murine embryo, each with distinct globin expression patterns and chromatin modifications of the β-globin locus. While both lineages predominantly express adult globins, the first, yolk sac-derived lineage uniquely expresses low levels of the embryonic βH1-globin gene as well as the human γ-globin transgene. The second definitive erythroid lineage, found in the later fetal liver and postnatal marrow, expresses only adult murine globins as well as low levels of the human γ-globin transgene only in the fetus. Our studies reveal a surprising complexity to the ontogeny of erythropoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2305-2305
Author(s):  
Kathleen E McGrath ◽  
Paul D Kingsley ◽  
James R Bowen ◽  
Jennifer L McLaughlin ◽  
James Palis

Abstract Abstract 2305 In the adult, all platelets are derived from hematopoietic stem cells (HSCs). However, we previously determined that the megakaryocyte (meg) lineage is specified several days before HSC emergence in the murine embryo and that circulating platelets exist in myb-null embryos, which lack HSCs. Pre-HSC meg progenitors arise in the yolk sac beginning at embryonic day 7.5 (E7.5) and have lower proliferative potential than adult meg progenitors. The fetal liver is colonized by over 1,000 meg progenitors by E10.5, before HSCs are found there. By E12.5, there are over one million circulating embryonic platelets that are larger than adullt platelets with smaller α-granules. There are also indications in humans of intrinsic differences between embryonic/fetal and adult thrombopoiesis, including the natural history of several congenital platelet disorders, as well as the small size, rapid maturation, and reduced platelet output of fetal/neonatal meg progenitors. We compared embryonic versus adult megakaryopoiesis and platelet function in the mouse. E12.5 fetal livers contain predominantly small megs with low ploidy (8% >4N versus 33% >4N in the adult marrow). Fetal megs have higher cell surface levels of CD41 and GP1bß and are larger than similar ploidy adult megs. Further evidence of rapid maturation of fetal megs was seen in the punctate localization pattern of endostatin and the presence of α-granules and a forming demarcation membrane system in small E12.5 liver megs. Like their primary counterparts, in vitro-generated embryonic megs from E9.5 yolk sac progenitors have lower ploidy than megs differentiated from bone marrow progenitors and show similar evidence of rapid cytoplasmic maturation. Initial analysis of megs generated from ES cells demonstrated low ploidy and rapid maturation similar to yolk sac-derived megs. These data support the concept that embryonic megakaryopoiesis is characterized by a rapid maturation and low ploidy phenotype that is cell intrinsic and is similar to that observed during ES cell megakaryopoiesis. An analysis of primary fetal versus adult platelets reveals similar patterns of VEGF and endostatin distribution in α-granules. However, there are differences in the expression of several other factors associated with platelet activation and function, including higher expression of the thrombin receptor PAR1 and lower expression of the ADP receptor P2Y12 and P-selectin in embryonic platelets. While primary adult and embryonic platelets have altered side scatter characteristics and binding of the activation-specific Jon/A antibody after thrombin treatment, embryonic platelets fail to express P-selectin on their surface. Taken together, our findings indicate that embryonic/fetal megakaryopoiesis is characterized by low ploidy and rapid maturation, and leads to the generation of platelets with marked differences in size, structure and function compared with adult platelets. A better understanding of hematopoietic ontogeny is particularly relevant to the generation of blood cells from embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, whose differentiation recapitulate early embryonic development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2372-2372
Author(s):  
Jenna M. Frame ◽  
Katherine H. Fegan ◽  
Seana C. Catherman ◽  
Joanna Tober ◽  
Anne D. Koniski ◽  
...  

Abstract In the adult, the proto-oncogene Myb critically regulates both the maintenance of hematopoiesis and the differentiation of several hematopoietic lineages. Myb-/- mouse embryos die by embryonic day (E) 15 with severe anemia due to the absence of definitive erythropoiesis (Mucenski et al., Cell, 1991). Similarly, zebrafish embryos lacking myb do not express adult globin genes, have a reduction in other mature hematopoietic lineages by 48 hours post fertilization, and maintain a bloodless phenotype through adulthood (Soza-Ried et al., PNAS, 2010). These and other data have led to the concept that Myb-/- embryos entirely lack definitive hematopoiesis. In both mouse and zebrafish embryos, the first definitive hematopoietic potential arises as a hematopoietic stem cell (HSC)-independent wave of erythro-myeloid progenitors (EMPs). EMPs emerge in the murine yolk sac beginning at E8.25, partially overlapping with an earlier wave of primitive hematopoietic progenitors. We previously demonstrated that EMPs are multipotent progenitors, and are the major source of definitive erythroid potential in the early fetal liver, prior to the colonization of adult-repopulating HSCs (McGrath et al., Blood, 2011). Recently, we identified a unique cell surface phenotype that facilitates the prospective isolation of murine definitive EMPs, distinguishing them from primitive hematopoietic progenitors and maturing populations of megakaryocytes and macrophages in the yolk sac (McGrath et al., Cell Reports, 2015). We detected expression of Myb in sorted EMPs, suggesting that Myb may regulate the emergence and/or differentiation of EMPs. We tested this hypothesis by assessing the emergence, hematopoietic potential and expansion capacity of EMPs, compared with other maturing primitive hematopoietic lineages, in Myb-/- mouse embryos. Consistent with the proposed Myb-independence of the earlier wave of primitive progenitors, we observed normal numbers of maturing macrophages in E9.5 Myb-/- yolk sacs. Interestingly, E9.5 Myb-/- yolk sacs also contained normal numbers of immunophenotypic EMPs. These EMPs were present in hemogenic endothelial-derived clusters expressing Runx1, similar to littermate controls, suggesting that Myb is dispensable for EMP emergence from hemogenic endothelium. We next assessed the differentiation capability of Myb-/- EMPs in vitro. E9.5 Myb-/- yolk sacs lacked high proliferative colony-forming potential (HPP-CFC), a hallmark of immature definitive hematopoietic progenitors. In addition, both definitive erythroid and granulocyte colony-forming potential were absent in methylcellulose cultures of sorted Myb-/- EMPs, in contrast to littermate controls. Surprisingly, however, sorted Myb-/- EMPs gave rise to macrophage progenitors in colony-forming assays, and CD11b+ F4/80+ macrophages in differentiation cultures. These data indicate that Myb is not required for the differentiation of primary definitive EMPs into macrophages. Analysis of Myb-/- fetal liversalso confirmed the presence of F4/80+ macrophages. While these fetal liver macrophages have been previously proposed to be of primitive hematopoietic origin, our data raise the possibility that they may also be derived from EMPs. Further analysis of in vitro differentiation cultures demonstrated an inability of sorted Myb-/- EMPs to proliferate when compared with normal littermates, although these cultures still generated small numbers of macrophages. It is not yet clear whether this reduction in proliferation is due solely to the loss of differentiation of multiple hematopoietic lineages, or is also due to defective maintenance or expansion of EMPs. However, consistent with a role for Myb in continued emergence and/or expansion of EMPs, we observed a reduction in the total number of EMPs by E10.5 in yolk sacs of Myb-/- embryos compared with normal littermates. Taken together, these data indicate that Myb is a critical regulator not only of HSCs, but also of HSC-independent definitive hematopoietic progenitors (EMPs). While Myb is dispensable for the initial emergence of EMPs, it is required for their subsequent differentiation into erythroid and granulocyte lineages. Surprisingly, the persistence of EMPs, while reduced, may provide a source of definitive macrophages in Myb-/- embryos. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2436-2443 ◽  
Author(s):  
Xiao-Yan Wang ◽  
Yu Lan ◽  
Wen-Yan He ◽  
Lei Zhang ◽  
Hui-Yu Yao ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent stem cells that can generate various microenvironment components in bone marrow, ensuring a precise control over self-renewal and multilineage differentiation of hematopoietic stem cells. Nevertheless, their spatiotemporal correlation with embryonic hematopoiesis remains rudimentary, particularly in relation to the human being. Here, we reported that human aorta-gonad-mesonephros (AGM) resided with bona fide MSCs. They were highly proliferative as fibroblastoid population bearing uniform surface markers (CD45−, CD34−, CD105+, CD73+, CD29+, and CD44+), expressed pluripotential molecules Oct-4 and Nanog, and clonally demonstrated trilineage differentiation capacity (osteocytes, chondrocytes, and adipocytes). The frequency and absolute number of MSCs in aorta plus surrounding mesenchyme (E26-E27) were 0.3% and 164, respectively. Moreover, they were functionally equivalent to MSCs from adult bone marrow, that is, supporting long-term hematopoiesis and suppressing T-lymphocyte proliferation in vitro. In comparison, the matching yolk sac contained bipotent mesenchymal precursors that propagated more slowly and failed to generate chondrocytes in vitro. Together with previous knowledge, we propose that a proportion of MSCs initially develop in human AGM prior to their emergence in embryonic circulation and fetal liver.


Sign in / Sign up

Export Citation Format

Share Document