scholarly journals Antagonism of VEGF-A–induced increase in vascular permeability by an integrin α3β1-Shp-1-cAMP/PKA pathway

Blood ◽  
2012 ◽  
Vol 120 (24) ◽  
pp. 4892-4902 ◽  
Author(s):  
Soo Hyeon Kim ◽  
Young-Rak Cho ◽  
Hyeon-Ju Kim ◽  
Joa Sub Oh ◽  
Eun-Kyung Ahn ◽  
...  

Abstract In cancer, VEGF-induced increase in vascular permeability results in increased interstitial pressure, reducing perfusion and increasing hypoxia, which reduce delivery of chemotherapeutic agents and increase resistance to ionizing radiation. Here, we show that both TIMP-2 and Ala + TIMP-2, a TIMP-2 mutant without matrix metalloproteinase inhibitory activity, antagonize the VEGF-A–induced increase in vascular permeability, both in vitro and in vivo. Like other agents known to preserve endothelial barrier function, TIMP-2 elevates cytosolic levels of cAMP and increases cytoskeletal-associated vascular endothelial cadherin in human microvascular endothelial cells. All of these effects are completely ablated by selective knockdown of integrin α3β1 expression, expression of a dominant negative protein tyrosine phosphatase Shp-1 mutant, administration of the protein tyrosine phosphatase inhibitor orthovanadate, or the adenylate cyclase inhibitor SQ22536. This TIMP-2–mediated inhibition of vascular permeability involves an integrin α3β1-Shp-1-cAMP/protein kinase A-dependent vascular endothelial cadherin cytoskeletal association, as evidenced by using siRNAs to integrin α3β1 and Shp-1, or treatment with Shp-1 inhibitor NSC87877 and protein kinase A inhibitor H89. Our results demonstrate the potential utility for TIMP-2 in cancer therapy through “normalization” of vascular permeability in addition to previously described antiangiogenic effects.

2001 ◽  
Vol 170 (2) ◽  
pp. 403-411 ◽  
Author(s):  
FC Maciel ◽  
C Poderoso ◽  
A Gorostizaga ◽  
C Paz ◽  
EJ Podesta

Our recent reports indicate that protein tyrosine phosphorylation is an obligatory component of the mechanism of action of ACTH in its stimulatory action of corticosteroid production in adrenal zona fasciculata (ZF). The role of protein tyrosine phosphatase (PTP) activity in the regulation of steroidogenesis by LH/chorionic gonadotropin (CG) was tested using cell-permeable PTP inhibitors. Thus, PTP inhibition blocks LH- and 8-bromo-cAMP-stimulated testosterone production by Leydig cells without affecting 22(R)OH-cholesterol-supported steroidogenesis, similar results to those obtained in the adrenal ZF/ACTH system, leading us to propose that PTP action is an obligatory and common step in the cascade triggered by both hormones. Then, we continued the study testing whether LH modulates PTP activity in MA-10 cells, a Leydig cell line. In this regard, we observed by an in-gel PTP assay two PTPs of 110 and 50 kDa that are activated by hormone and 8-bromo-cAMP activation of the cells. Moreover, there is a transient increase by the second messenger in total PTP activity that correlates with the higher activity displayed by the 110 and 50 kDa proteins in the in-gel assay. In accordance with these results, analysis of tyrosine phosphorylated proteins showed the LH-induced dephosphorylation of proteins of 120, 68 and 50 kDa. The results of this study indicate that PTPs play an important role in the regulation of Leydig cell functions and that there exists a cross talk between serine/threonine phosphorylation and tyrosine dephosphorylation mediated by hormone-activated cAMP-dependent protein kinase and PTPs. These results are the first evidence of PTP having a role in LH/CG-stimulated steroidogenesis.


2012 ◽  
Vol 11 (1) ◽  
pp. 6 ◽  
Author(s):  
Maria Meehan ◽  
Laavanya Parthasarathi ◽  
Niamh Moran ◽  
Caroline A Jefferies ◽  
Niamh Foley ◽  
...  

1999 ◽  
Vol 248 (1) ◽  
pp. 329-338 ◽  
Author(s):  
Cesario Bianchi ◽  
Frank W. Sellke ◽  
Robert L. Del Vecchio ◽  
Nicholas K. Tonks ◽  
Benjamin G. Neel

Sign in / Sign up

Export Citation Format

Share Document