Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway

Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Yonghui Li ◽  
Li Gao ◽  
Xufeng Luo ◽  
Lili Wang ◽  
Xiaoning Gao ◽  
...  

Abstract t(8;21) is one of the most frequent chromosomal translocations occurring in acute myeloid leukemia (AML) and is considered the leukemia-initiating event. The biologic and clinical significance of microRNA dysregulation associated with AML1/ETO expressed in t(8;21) AML is unknown. Here, we show that AML1/ETO triggers the heterochromatic silencing of microRNA-193a (miR-193a) by binding at AML1-binding sites and recruiting chromatin-remodeling enzymes. Suppression of miR-193a expands the oncogenic activity of the fusion protein AML-ETO, because miR-193a represses the expression of multiple target genes, such as AML1/ETO, DNMT3a, HDAC3, KIT, CCND1, and MDM2 directly, and increases PTEN indirectly. Enhanced miR-193a levels induce G1 arrest, apoptosis, and restore leukemic cell differentiation. Our study identifies miR-193a and PTEN as targets for AML1/ETO and provides evidence that links the epigenetic silencing of tumor suppressor genes miR-193a and PTEN to differentiation block of myeloid precursors. Our results indicated a feedback circuitry involving miR-193a and AML1/ETO/DNMTs/HDACs, cooperating with the PTEN/PI3K signaling pathway and contributing to leukemogenesis in vitro and in vivo, which can be successfully targeted by pharmacologic disruption of the AML1/ETO/DNMTs/HDACs complex or enhancement of miR-193a in t(8;21)–leukemias.

Leukemia ◽  
2021 ◽  
Author(s):  
Madeline Niederkorn ◽  
Chiharu Ishikawa ◽  
Kathleen M. Hueneman ◽  
James Bartram ◽  
Emily Stepanchick ◽  
...  

AbstractUbiquitin-specific peptidase 15 (USP15) is a deubiquitinating enzyme implicated in critical cellular and oncogenic processes. We report that USP15 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) as compared to normal hematopoietic progenitor cells. This high expression of USP15 in AML correlates with KEAP1 protein and suppression of NRF2. Knockdown or deletion of USP15 in human and mouse AML models significantly impairs leukemic progenitor function and viability and de-represses an antioxidant response through the KEAP1-NRF2 axis. Inhibition of USP15 and subsequent activation of NRF2 leads to redox perturbations in AML cells, coincident with impaired leukemic cell function. In contrast, USP15 is dispensable for human and mouse normal hematopoietic cells in vitro and in vivo. A preclinical small-molecule inhibitor of USP15 induced the KEAP1-NRF2 axis and impaired AML cell function, suggesting that targeting USP15 catalytic function can suppress AML. Based on these findings, we report that USP15 drives AML cell function, in part, by suppressing a critical oxidative stress sensor mechanism and permitting an aberrant redox state. Furthermore, we postulate that inhibition of USP15 activity with small molecule inhibitors will selectively impair leukemic progenitor cells by re-engaging homeostatic redox responses while sparing normal hematopoiesis.


Blood ◽  
2012 ◽  
Vol 120 (5) ◽  
pp. 1107-1117 ◽  
Author(s):  
Satomi Tanaka ◽  
Satoru Miyagi ◽  
Goro Sashida ◽  
Tetsuhiro Chiba ◽  
Jin Yuan ◽  
...  

Abstract EZH2, a catalytic component of the polycomb repressive complex 2, trimethylates histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Although EZH2 is overexpressed in various cancers, including some hematologic malignancies, the role of EZH2 in acute myeloid leukemia (AML) has yet to be examined in vivo. In the present study, we transformed granulocyte macrophage progenitors from Cre-ERT;Ezh2flox/flox mice with the MLL-AF9 leukemic fusion gene to analyze the function of Ezh2 in AML. Deletion of Ezh2 in transformed granulocyte macrophage progenitors compromised growth severely in vitro and attenuated the progression of AML significantly in vivo. Ezh2-deficient leukemic cells developed into a chronic myelomonocytic leukemia–like disease with a lower frequency of leukemia-initiating cells compared with the control. Chromatin immunoprecipitation followed by sequencing revealed a significant reduction in the levels of trimethylation at H3K27 in Ezh2-deficient leukemic cells, not only at Cdkn2a, a known major target of Ezh2, but also at a cohort of genes relevant to the developmental and differentiation processes. Overexpression of Egr1, one of the derepressed genes in Ezh2-deficient leukemic cells, promoted the differentiation of AML cells profoundly. Our findings suggest that Ezh2 inhibits differentiation programs in leukemic stem cells, thereby augmenting their leukemogenic activity.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3790-3790 ◽  
Author(s):  
Weiguo Zhang ◽  
Nalini Patel ◽  
William E. Fogler ◽  
John L. Magnani ◽  
Michael Andreeff

Abstract Aberrant activation of the FMS-like tyrosine kinase-3 (FLT3) is driven by internal tandem duplication (ITD) mutations in the FLT3 gene, which are commonly observed in patients with acute myeloid leukemia (AML). Hence, FLT3 represents an attractive therapeutic target in AML (Weisberg et al., 2002). Indeed, several small molecule FLT3 inhibitors including sorafenib have showed encouraging efficacy in reducing leukemia blasts in the peripheral blood in FLT3 mutated AML patients. However, these agents have little effect on leukemic stem cells in the bone marrow (BM) microenvironment (Borthakur et al., 2011; Fathi and Chabner, 2011; Zhang et al., 2008). The BM microenvironment is enriched with cytokines and adhesion molecules, such as CXCR4 and E-selectin, which are believed to provide AML cells protection against chemotherapeutic agents (Horacek et al., 2013; Peled and Tavor, 2013). In fact, treatment with sorafenib markedly upregulated CXCR4 levels in FLT3 -mutated cells. In addition, leukemia cells can activate endothelial cells (EC) that induce adhesion of a sub-set of the leukemia cells through E-selectin. The adherent AML cells are sequestered in a nonproliferative state that further protects them from chemotherapy (Pezeshkian et al., 2013). Therefore, blocking CXCR4 and E-selectin in parallel could theoretically eliminate the protection provided by the interaction of leukemic cells with their BM microenvironment and enhance effectiveness of chemotherapy in FLT3-mutant AML patients. In the present study, we evaluated the effectiveness of a dual CXCR4 and E-selectin antagonist, GMI-1359 (GlycoMimetics, Inc., Rockville, MD), in targeting FLT3-ITD-mutant AML in vitro and in vivo. High levels of CXCR4 expression were observed in several human and murine AML cell lines, which was further increased in hypoxic (i.e., 1% oxygen) conditions that mimic the BM microenvironment. These FLT3 -ITD leukemic cell lines also expressed hypoxia-responsive, functional E-selectin ligands identified by reactivity with an antibody (HECA452) that binds the same carbohydrate epitope required for binding to E-selectin. One such E-selectin ligand CD44 increased in FLT3 -ITD cells cultured in hypoxia compared to those cultured in normoxia (i.e. 21% oxygen). In addition, hypoxia also enhanced CXCR4 expression on mesenchymal stem cells (MSC) and EC such as HUVEC. In hypoxic co-cultures of the FLT3 -ITD-mutant leukemia cells MV4-11 or MOLM14 with MSCs and ECs (i.e., HUVEC or TeloHAEC), the presence of the dual E-selectin/CXCR4 inhibitor GMI-1359 effectively reduced leukemic cell adhesion by ~ 50% to the MSC/EC feeder layer compared to the PBS-treated control (p<0.05), even in the presence of TNFa, which induces E-selectin expression in EC. However, an E-selectin specific inhibitor only reduced adhesion of MV4-11 and MOLM14 by ~ 20%. GMI-1359 markedly abrogated the protection provided by the BM microenvironment (i.e., hypoxia and/or MSC and EC) of Baf3-FLT3 -ITD leukemic cells treated with the FLT3 inhibitor sorafenib. Apoptosis was induced in 36.6%, 35.6% and 48.9% of leukemic cells cultured with sorafenib alone, sorafenib and an E-selectin inhibitor or sorafenib and GMI-1359, respectively. The significance of these in vitro findings were studied in vivo. Female SCID beige mice were injected iv with MV4-11 and followed for survival. Beginning 14 days post tumor injection, cohorts of mice (n=10/group) were treated with saline, GMI-1359 (40 mg/kg), standard chemotherapy cytarabine plus daunorubicin, or a combination of GMI-1359 and chemotherapy. Combined treatment of mice with GMI-1359 (40 mg/kg) and chemotherapy demonstrated a profound survival benefit compared to controls or chemotherapy alone at day 135 after leukemia cell injection (i.e., 67% vs. 11% or 30%, p=0.0011 and 0.0406, respectively). Single agent treatment with GMI-1359 was statistically indistinguishable from saline alone or chemotherapy alone. In a separate cohort of MV4.11-engrafted mice, the single administration of GMI-1359 increased circulating WBC and leukemic MV4-11cells, which persisted for at least 8 hrs. This effect was consistent with GMI-1359 disrupting the protective effects of the tumor microenvironment and mobilizing MV4-11 cells from the BM niche.. These findings provide the pre-clinical basis for the evaluation of GMI-1359 in patients with FLT3 -mutant AML. Figure 1. Figure 1. Disclosures Zhang: Karyopharm: Research Funding. Fogler:GlycoMimetics, Inc.: Employment. Magnani:GlycoMimetics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Author(s):  
Hao Zhou ◽  
Wei Liu ◽  
Yongming Zhou ◽  
Zhenya Hong ◽  
Jian Ni ◽  
...  

Abstract Background Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Its therapy has not significantly improved during the past four decades despite intense research efforts. New molecularly targeted therapies are in great need. The proto-oncogene c-Myc (MYC) is an attractive target due to its transactivation role in multiple signaling cascades. Deregulation of the MYC is considered one of a series of oncogenic events required for tumorigenesis. However, limited knowledge is available on which mechanism underlie MYC dysregulation and how long non-coding RNAs (lncRNAs) are involved in MYC dysregulation in AML. Methods AML microarray chips and public datasets were screened to identify novel lncRNA GAS6-AS1 was dysregulated in AML. Gain or loss of functional leukemia cell models were produced, and in vitro and in vivo experiments were applied to demonstrate its leukemogenic phenotypes. Interactive network analyses were performed to define intrinsic mechanism. Results We identified GAS6-AS1 was overexpressed in AML, and its aberrant function lead to more aggressive leukemia phenotypes and poorer survival outcomes. We revealed that GAS6-AS1 directly binds Y-box binding protein 1 (YBX1) to facilitate its interaction with MYC, leading to MYC transactivation and upregulation of IL1R1, RAB27B and other MYC target genes associated with leukemia progression. Further, lentiviral-based GAS6-AS1 silencing inhibited leukemia progression in vivo. Conclusions Our findings revealed a previously unappreciated role of GAS6-AS1 as an oncogenic lncRNA in AML progression and prognostic prediction. Importantly, we demonstrated that therapeutic targeting of the GAS6-AS1/YBX1/MYC axis inhibits AML cellular propagation and disease progression. Our insight in lncRNA associated MYC-driven leukemogenesis may contribute to develop new anti-leukemia treatment strategies.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1881-1881
Author(s):  
Yanyan Zhang ◽  
Satyananda Patel ◽  
Monika Wittner ◽  
Stephane De Botton ◽  
Eric Solary ◽  
...  

Abstract Abstract 1881 The chemokine receptor CXCR4 favors the interaction of acute myeloid leukemia (AML) cells with their niche but the extent to which it participates to pathogenesis is unclear. Here we show that CXCR4 expression at the surface of leukemic cells allowed distinguishing CXCR4high (25/47; 53%) from CXCR4neg/low (22/47, 47%) AML patients. Leukemic engraftment in NOD/Shi-scid/IL-2Rnull (NOG) mice was observed for both the CXCR4high and CXCR4neg/low groups. When high levels of CXCR4 are expressed at the surface of AML cells, blocking the receptor function with small molecule inhibitors could promote leukemic cell death and reduce NOG leukemia-initiating cells (LICs). Conversely, these drugs had no efficacy when AML cells do not express CXCR4 or when they do not respond to CXCL12. Mechanisms of this anti-leukemic effect included interference with the retention of LICs with their supportive bone marrow microenvironment niches, as indicated by a mobilization of LICs in response to drugs, and increased apoptosis of leukemic cells in vitro and in vivo. CXCR4 expression level on AML blast cells and their migratory response to CXCL12 are therefore predictive of the response to the inhibitors and could be used as biomarkers to select patients that could potentially benefit from the drugs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 651-651
Author(s):  
Ashley Pandolfi ◽  
Boris Bartholdy ◽  
Masahiro Kawahara ◽  
Laura Barreyro ◽  
Britta Will ◽  
...  

Abstract Abstract 651 Acute myeloid leukemia (AML) is an aggressive disease which is associated with poor clinical outcome. Less than one third of patients achieve durable remission with current treatment regimens, and prognostication and risk stratification are challenging. Identification and functional studies of genes and pathways which regulate leukemic transformation and maintenance is instrumental to understanding the pathogenesis of AML and for development of novel therapeutic strategies. Several members of the Hox (class I homeobox) family of transcription factors have been implicated in the regulation of normal hematopoiesis and leukemogenesis. Less is known about the role of non-clustered (class II) homeobox genes. We found that a new non-clustered homeobox gene, H2.0-like homeobox (HLX), regulates early hematopoiesis and promotes AML in mice and humans. HLX is 2 to 16 fold overexpressed in more than 80% of patients with AML, across all major disease subtypes. Higher levels of HLX are associated with poor overall survival in 3 different, large cohorts of AML patients (N=601, p=2.3×10−6), and HLX holds up as an independent prognostic factor in a multivariate analysis. ShRNA-mediated inhibition of HLX in both murine and human AML cells significantly inhibits leukemic growth and clonogenic capacity, and overcomes the differentiation block of AML cells. When we analyzed pre-leukemic hematopoietic stem and progenitor cells (HSPC) in a PU.1 URED/D AML mouse model, we found a 4-fold elevation of Hlx, suggesting that Hlx is involved in malignant transformation. Overexpression of HLX in wildtype HSPC in a competitive, congenic transplantation model led to near complete depletion of long-term HSC and 16-fold enrichment of myeloid progenitors with a surface phenotype slightly past the GMP stage (CD45+Kit−CD34−CD44highCD49bhighCD11bmid). Overexpression of HLX in HSPC in vitro led to a myeloid differentiation block and to formation of aberrant, CD34−Kit− progenitors with unlimited serial clonogenicity. The mechanism of action of Hlx is so far unknown. The presence of a C-terminal homeobox domain suggests Hlx may directly interact with DNA, however, no studies have shown DNA binding by Hlx or identified direct Hlx target genes. We find that mutation of only two residues of the Hlx homeodomain is sufficient to completely abrogate the differentiation block induced by HLX overexpression in HSPC, indicating Hlx is acting through the DNA-binding ability of its homeodomain. Furthermore, we have now identified direct HLX target genes in both HSPC and AML cells using a combination of expression microarrays and chromatin-immunoprecipitation (chIP). We find that HLX regulates a set of genes which mediate its leukemia-promoting functions, such as BTG1, and we have used chIP to identify a subset of these genes, including PAK1, that are direct targets of HLX. Internal tandem duplications of FLT3 (FLT3-ITD) are seen in approximately 25% of all AML patients, and confer a poor prognosis. Correlative analyses showed that AML patients with mutant FLT3 and low HLX have overall survival similar to WT FLT3 patients, and survive significantly longer than patients with mutant FLT3 and high HLX (p=0.005), demonstrating that FLT3 mutations confer poor prognosis only if HLX is highly expressed, and suggesting that HLX and mutant FLT3 functionally cooperate. We find that co-expression of HLX and FLT3-ITD leads to dramatically enhanced cytokine independent growth and clonogenicity of 32D cells as well as primary murine HSPC in vitro. When we retrovirally co-expressed HLX and FLT3-ITD, or FLT3-ITD alone (plus an empty control), in primary Lin−Kit+ cells and transplanted them into congenic recipient animals, we found that four weeks after transplantation donor chimerism was 4-fold increased on average in the peripheral blood (PB) and bone marrow (BM), and by 12 weeks post-transplantation mice expressing FLT3-ITD and HLX developed AML with large numbers of leukemic blasts in the PB and BM. We have generated knock-in mice conditionally overexpressing Hlx from the Rosa26 locus and ongoing studies include crossing these mice into FLT3-ITD knock-in animals. In summary, our studies have identified HLX as a novel key transcription factor involved in the regulation of early hematopoiesis and AML pathogenesis, and suggest HLX and downstream pathways as promising new therapeutic targets in AML. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3385
Author(s):  
Axel H. Schönthal ◽  
Steve Swenson ◽  
Radu O. Minea ◽  
Hye Na Kim ◽  
Heeyeon Cho ◽  
...  

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.


2016 ◽  
Vol 113 (43) ◽  
pp. E6669-E6678 ◽  
Author(s):  
Mark A. Gregory ◽  
Angelo D’Alessandro ◽  
Francesca Alvarez-Calderon ◽  
Jihye Kim ◽  
Travis Nemkov ◽  
...  

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


Sign in / Sign up

Export Citation Format

Share Document