scholarly journals Inflammation, von Willebrand factor, and ADAMTS13

Blood ◽  
2018 ◽  
Vol 132 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Junmei Chen ◽  
Dominic W. Chung

Abstract Increasing evidence indicates that inflammation can cause thrombosis by a von Willebrand factor (VWF)-mediated mechanism that includes endothelial activation, secretion of VWF, assembly of hyperadhesive VWF strings and fibers, cleavage by ADAMTS13, and adhesion and deposition of VWF-platelet thrombi in the vasculature. This mechanism appears to contribute to thrombosis not only in small vessels, but also in large vessels. Inflammation and VWF contribute to atherogenesis and may contribute to arterial and venous thrombosis as well as stroke. Elucidation of the mechanism will hopefully identify new targets and suggest new approaches for prevention and intervention.

2017 ◽  
Vol 44 (03) ◽  
pp. 249-260 ◽  
Author(s):  
Paolo Calabrò ◽  
Felice Gragnano ◽  
Enrica Golia ◽  
Erik Grove

AbstractVenous thromboembolism (VTE) is a frequent cause of disability and mortality worldwide. Von Willebrand factor (VWF) is a major determinant of hemostasis and clot formation, in both arteries and veins. Although VWF is mainly known for its role in arterial thrombosis, several studies suggest a pathogenic role for VWF and its regulator ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) in venous thrombosis. Nongenetic and genetic factors, including gene mutations and polymorphisms, aging, hormone status, ABO blood groups, and systemic inflammation, have been involved in the modulation of both VTE predisposition and plasma levels of VWF. In several clinical settings, including inflammatory disease and cancer, VWF and ADAMTS-13 are currently investigated as possible determinants of vein thrombosis. These data indicate VWF as a potential therapeutic target in the management of VTE. Several studies report unselective antagonism of VWF for drugs used in daily clinical practice, including heparin and statins. Selective inhibition of VWF pathway has recently been tested in animal models of arterial and venous thrombosis as a novel therapeutic strategy to prevent platelet aggregation and thrombosis, promote vein lumen recanalization, and improve vein valve competency with excellent safety profile. In this review, we summarize the role of VWF in VTE, focusing on clinical and potential therapeutic implications.


2020 ◽  
Vol 11 ◽  
Author(s):  
Junxian Yang ◽  
Zhiwei Wu ◽  
Quan Long ◽  
Jiaqi Huang ◽  
Tiantian Hong ◽  
...  

Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.


2008 ◽  
Vol 1 ◽  
pp. CCRep.S737
Author(s):  
Mari Terashima ◽  
Hiroshi Kataoka ◽  
Hirosei Horikawa ◽  
Hiroyuki Nakagawa ◽  
Toshiaki Taoka ◽  
...  

Background and purpose Previous studies have linked procoagulant factor VIII (F VIII) to an increased risk of venous thrombosis, whereas the relation between plasma von Willebrand factor (VWF) and venous thrombosis remains poorly understood. Elevated VWF levels are frequently found in patients with cerebral sinus and venous thrombosis (CSVT), always in association with high F VIII levels. We describe a patient with CSVT accompanied by elevated VWF levels without high F VIII levels. Case description A 23-year-old healthy man who had headache noticed difficulty in moving the right hand. On the following day, he lost consciousness and had partial seizures of the right hand. After regaining consciousness, weakness of the right extremities developed. The cranial angiogram confirmed occlusion of the superior sagittal sinus. The levels of VWF and F VIII were 238% and 101.9 IU/dl, respectively. We performed balloon percutaneous transluminal angioplasty and mechanical thrombectomy, leading to successful recanalization of the intracranial sinuses. VWF levels were decreased along with radiographic improvement, independently of F VIII. Conclusion VWF may contribute to CSVT and that inhibition of VWF activity potentially has a role in the future treatment of pathological conditions related to venous thrombosis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1492-1492
Author(s):  
Darintr Sosothikul ◽  
Panya Seksarn ◽  
Sureeporn Pongsawaluk ◽  
Jeanne M. Lusher

Abstract Dengue virus causes febrile illnesses: Dengue Fever (DF) and less frequently a life-threatening illness, Dengue Hemorrhagic Fever (DHF). The pathophysiology of hemostatic defect in dengue infection is thought to relate to the direct effect of virus or cytokines on endothelial activation. To study the state of endothelial activation during dengue infection, we measured plasma levels of von Willebrand factor antigen (vWF:Ag), vWF-collagen binding assay (vWF:CBA), and ADAMTS 13 activity in 42 children (20 with DF and 22 with DHF) during 3 phases of illness: febrile, toxic, and convalescent phase. 38 healthy children comprised as controls. Our data shows that both VWF:Ag and vWF:CBA levels were significantly higher in dengue patients (p ≤ 0.001 in both DF and DHF patients) versus controls. DHF patients had significantly higher of VWF: Ag (p = 0.01, versus DF). ADAMTS 13 activity levels were significantly decreased only in DHF patients during 3 phases of the illness (febrile; mean 78%; p = 0.016, toxic; mean 68%; p<0.001 and convalescent; mean 69%; p<0.001 compared to mean 104% of the controls). Compared to DF patients, DHF patients had significantly lower plasma concentrations of ADAMTS 13 activity during the febrile, toxic and convalescent phase (p = 0.039, p = 0.002 and p =0.003, respectively). Endothelial cell activation is a hallmark of dengue infection especially in DHF patients; indicated by a significant rise in VWF:Ag and vWF:CBA and a reciprocal decline in ADAMTS 13 activity.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 261-261
Author(s):  
Junmei Chen ◽  
Ying Zheng ◽  
Jose A. Lopez

Abstract Abstract 261 Endothelial activation and microvascular thrombosis are hallmarks of thrombotic microangiopathy—a group of life-threatening disorders that includes thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Activated endothelial cells release von Willebrand factor (VWF), which can form long strands under flow that remain attached to the endothelium until they are cleaved off by the metalloprotease ADAMTS13. Failure to remove these strands, either because of ADAMTS13 deficiency or oxidation of its cleavage site on VWF, results in microvascular thrombosis. Until now, studies of VWF strands under flow have been performed either in flow chambers with cultured endothelial cells, which does not account for either vessel caliber or geometry, or in live mice, in which it is impossible to study individually the contributions of the various blood components. Recently, we developed a technique to engineer microvessels in vitro that enables us to precisely control several vessel parameters, including lumen diameter and branching architecture, flow patterns, and applied shear stresses, in addition to being able to test individual components of the blood in a system with only human components (PNAS 2012, 109:9342–9347). In the current study, we used this system to examine the effects of a number of variables on the formation of VWF strands from the endothelium of stimulated vessels. We found that VWF fibers can extend across the vessel lumen and attach to opposite sides of the vessel wall in agonist-treated microvessels of up to 200 μm in diameter. Depending on flow conditions, smaller strands can self-associate to form longer and thicker cables. The VWF cables produced solely from VWF contributed by the vessel wall reached lengths up to 5 cm, and became so thick as to be visible, unstained, by light microscopy. When plasma or recombinant VWF was perfused over the VWF cables, the fluid-phase VWF associated with the vessel-bound cables, further thickening them and sometimes inducing web-like structures. The location and structure of the VWF fibers were dependent on vessel geometry and flow pattern; secondary flows that developed at bends or bifurcations in the vessel induced circular clumping of the VWF strands. When whole blood was perfused into the vessels, the transluminal VWF fiber webs caught flowing platelets and leukocytes to form aggregates in the middle of blood stream that sometimes occluded the vessels. The region where the vessel is most likely to occlude also depends on geometry. After this type of trapping, leukocytes were seen to transmigrate across the endothelium. The structure and size of the cables also depended on the agonist employed to stimulate VWF release from the endothelium. Phorbol myristate acetate and shiga-like toxin–2 both produced thicker cables than histamine did, and these were more resistant to ADAMTS13 cleavage. This difference is potentially a result of the former agonists stimulating an endothelial respiratory burst and oxidation of the ADAMTS13 cleavage site on VWF. In summary, our data show that VWF secreted from activated endothelial cells can form transluminal fibers and cables in small vessels. Some of the fibers or cables are resistant to ADAMTS13 cleavage, a likely consequence of their thickness and possibly, oxidation. The webs of VWF fibers or cables in the lumen of small vessels obstruct blood flow by binding to circulating platelets and leukocytes, and are also capable of shredding erythrocytes as they flow past. These findings provide insights into the mechanisms of microangiopathy, and raise the possibility that VWF cables alone, even in the absence of bound platelets, may be capable of occluding small blood vessels and produce many of the characteristic signs of thrombotic microangiopathy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document