scholarly journals The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy

Blood ◽  
2019 ◽  
Vol 133 (6) ◽  
pp. 550-565 ◽  
Author(s):  
Tatjana Bilich ◽  
Annika Nelde ◽  
Leon Bichmann ◽  
Malte Roerden ◽  
Helmut R. Salih ◽  
...  

Abstract Antileukemia immunity plays an important role in disease control and maintenance of tyrosine kinase inhibitor (TKI)-free remission in chronic myeloid leukemia (CML). Thus, antigen-specific immunotherapy holds promise for strengthening immune control in CML but requires the identification of CML-associated targets. In this study, we used a mass spectrometry–based approach to identify naturally presented HLA class I– and class II–restricted peptides in primary CML samples. Comparative HLA ligandome profiling using a comprehensive dataset of different hematological benign specimens and samples from CML patients in deep molecular remission delineated a panel of novel frequently presented CML-exclusive peptides. These nonmutated target antigens are of particular relevance because our extensive data-mining approach suggests the absence of naturally presented BCR-ABL– and ABL-BCR–derived HLA-restricted peptides and the lack of frequent tumor-exclusive presentation of known cancer/testis and leukemia-associated antigens. Functional characterization revealed spontaneous T-cell responses against the newly identified CML-associated peptides in CML patient samples and their ability to induce multifunctional and cytotoxic antigen-specific T cells de novo in samples from healthy volunteers and CML patients. Thus, these antigens are prime candidates for T-cell–based immunotherapeutic approaches that may prolong TKI-free survival and even mediate cure of CML patients.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2169-2169
Author(s):  
Linus Backert ◽  
Daniel J. Kowalewski ◽  
Simon D. Walz ◽  
Heiko Schuster ◽  
Claudia Berlin ◽  
...  

Abstract Effective antigen-specific T-cell-based cancer immunotherapy requires exact knowledge of tumor-associated epitopes that can act as rejection antigens. While the current paradigm views mutation-derived neoantigens as the most promising targets, we have recently demonstrated that tumor-specific T-cell responses target panels of non-mutated tumor-associated self antigens in patients with hematological malignancies. Using the approach of direct HLA ligandome analysis by mass spectrometry, we were able to identify and characterize multiple immunogenic and naturally presented tumor-associated antigens for chronic lymphocytic leukemia (CLL, Kowalewski et. al., PNAS 2015), acute myeloid leukemia (AML, Berlin/Kowalewski et. al., Leukemia 2014), multiple myeloma (MM, Walz/Stickel et. al., Blood 2015) and chronic myeloid leukemia (CML, unpublished data). In this project we performed a comprehensive meta-analysis of our HLA ligandome data from different hematological malignancies (HM) to screen for the existence of "pan-leukemia" antigens for the broad application in T-cell based immunotherapy approaches in hematological malignancies. In a first step we performed unsupervised cluster analyses to identify similarities and differences in the HLA ligandome landscape of HM. To avoid skewed clustering due to HLA types of the samples, these analyses were performed specifically for the most common HLA allotypes in our datasets (A*02 (n=46 HM), A*03 (n=28 HM)). Distinct clustering was shown for the different entities (CLL, MM, CML, AML) as well as for the lymphoid versus myeloid malignancies on the HLA ligandome level. To identify leukemia-exclusive HLA ligands we compared the HLA ligandomes of CLL (HLA class I, n=35; HLA class II, n=30), AML (HLA class I, n=19; HLA class II, n=20), MM (HLA class I, n=15; HLA class II n=12) and CML (HLA class I, n=16; HLA class II n=15) with our normal tissue database including 153 HLA class I and 82 HLA class II ligandomes of various normal tissues (including normal blood, bone marrow and spleen). Cluster analysis of the leukemia-exclusive antigens showed identical clustering of the different entities and lymphoid/myeloid malignancies as shown before for the whole HLA ligandome and the respective source proteins. Overlap analysis revealed only 0.6% (16/2,716) and 0.3% (10/3,141) of the identified leukemia-exclusive HLA class I and class II antigens, respectively, to be represented across all analyzed hematological malignancies. These "pan-leukemia" antigens (n=26) include candidate antigens associated with T-cell activation (HSH2D), lymphoid development (IL2RF) and oncogenesis (LYN protooncogene, RAB5A). However, none of these "pan-leukemia" antigens shows frequent representation (>20%) across all 4 entities (CLL, AML, MM, CML). Furthermore, none of the "pan-leukemia" source proteins yielded corresponding peptides represented in all entities. To identify "pan-leukemia" HLA ligands, overlap analyses were performed in an allotype-specific fashion for the most frequent HLA allotypes (HLA-A*01, -A*02, -A*03, -A*24, -B*07, -B*08, -B*18) in our cohort. 0% (0/92) of HLA-A*01-, 1.6% (12/744) of HLA-A*02-, 1.4% (8/561) of HLA-A*03-, 0% (0/331) of HLA-A*24-, 0.1% (1/830) of HLA-B*07-, 0% (0/472) of HLA-B*08- and 0.8% (5/600) of the HLA-B*18-restricted peptides showed representation in all four entities. Out of these 26 "pan-leukemia" HLA ligands, only two (1 HLA-A*02-, 1 HLA-A*03-restricted peptide) showed frequent representation (>20%) in all entities. These peptides represent "pan-leukemia" targets that might be used for immunotherapeutic approaches in patients expressing the respective HLA allotype. Taken together, our approach of direct HLA ligandome analysis of hematological malignancies identified a small panel of "pan-leukemia"- proteins and peptides that show cancer-exclusive representation across all 4 included hematological malignancies. However, due to the low presentation frequencies of the candidate targets within the different entities, target discovery and compound development for the immunotherapy of HM may be more effectively achieved in an entity-specific or even patient-individualized manner. Disclosures Kowalewski: Immatics Biotechnologies GmbH: Employment. Schuster:Immatics Biotechnologies GmbH: Employment. Brümmendorf:Pfizer: Consultancy, Honoraria; Ariad: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Patent on the use of imatinib and hypusination inhibitors: Patents & Royalties. Niederwieser:Novartis Oncology Europe: Research Funding, Speakers Bureau; Amgen: Speakers Bureau. Weisel:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; Onyx: Consultancy; BMS: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Novartis: Honoraria.


2021 ◽  
Vol 5 (4) ◽  
pp. 171-174
Author(s):  
Tuba Iqbal ◽  
◽  
Amber Younus ◽  
Uzma Zaidi ◽  
Jawad Hassan ◽  
...  

Abstract: Background: Pediatric Chronic Myeloid Leukemia (CML) is a rare entity accounting for 2-3% of pediatric malignancies. CML rarely presents as Blast Crisis (BC) at the time of diagnosis, and megakaryocytic blast crisis is even rarer. Case Presentation: We herein, report a case of a young female, 10-year-old who presented with anemia, leukocytosis and massive splenomegaly. Clinical features, peripheral film and bone marrow findings were consistent with CML in megakaryocytic blast crisis. Bone marrow cytogenetic analysis revealed karyotype of 46, XX, t(9:22)(q34;q11.2) in 20 metaphases and BCR-ABL P210 by PCR was detected with transcript level of 83%, which further confirmed our diagnosis. Conclusion: De novo presentation of chronic myeloid leukemia with megakaryocytic blast crisis is rarely observed in pediatric population with very few cases published till now. We are presenting this case because of its rarity, likelihood of misdiagnosis as AML (M7) and poor prognosis, if not treated precisely. Keywords: Chronic Myeloid Leukemia (CML), Acute Myeloid Leukemia (AML), Blast Crisis (BC), Acute Megakaryocytic Leukemia (AMKL), Chronic Phase (CP), Accelerated Phase (AP), Tyrosine Kinase Inhibitor (TKI).


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4820
Author(s):  
Raquel Alves ◽  
Ana Cristina Gonçalves ◽  
Sergio Rutella ◽  
António M. Almeida ◽  
Javier De Las De Las Rivas ◽  
...  

Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3975-3975 ◽  
Author(s):  
Juliane S. Stickel ◽  
Daniel J. Kowalewski ◽  
Mirle Schemionek ◽  
Lothar Kanz ◽  
Tim H. Brümmendorf ◽  
...  

Abstract Despite the success of targeted therapy using tyrosine kinase inhibitors (TKIs), chronic myeloid leukemia (CML) remains largely incurable, most likely due to the treatment resistance of leukemic stem cells. Specific T-cell based immunotherapies for patients with CML might be able to eliminate these residual CML cells. For this goal the identification of tumor associated HLA-presented peptides, which are able to induce a tumor-specific T cell response, is indispensable. However, only few tumor associated antigens for CML are described till date. Thus the aim of this study was to identify for the first time naturally processed and presented HLA ligands from the cell surface of primary CML cells. HLA class I ligands from primary CML cells as well as from bone marrow mononuclear cell (BMNCs) and peripheral blood PBMCs of healthy donors were analyzed using the approach of direct isolation and identification of naturally presented HLA peptides by affinity chromatography and mass spectrometry (LC-MS/MS). LC-MS/MS peptide analysis provided qualitative and semi-quantitative information regarding the composition of the respective ligandomes. Comparative analysis of malignant and benign samples served to identify ligandome-derived tumor associated antigens (LiTAAs) and to select peptide vaccine candidates. So far 10 CML patients (8 chronic phase, 2 accelerated phase) and 30 healthy donors were analyzed within this study. We were able to identify a total of more than 8200 CML derived HLA ligands representing >4500 different source proteins, of which 734 were exclusively represented in CML, but not in healthy PBMCs/BMNCs. 55 of these CML exclusive antigens are presented on 3 or more of all examined CML patients, representing, as broadly represented LiTAAs, promising targets for peptide vaccination. For the first time, previously predicted CML tumor associated antigens for example Myeloperoxidase (10 peptide sequences on 7 CML patients) and Proteinase 3 (5 peptide sequences on 4 CML patients) were here confirmed by direct elution from primary CML cells, which also served to validate our methodological approach. Notably, beyond that we also identified a vast array of novel proteins (e.g. Carcinoembryonic antigen-related cell adhesion molecule 8, CEACAM8; Matrix metallopeptidase 8, MMP8; intracellular adhesion molecule 3, ICAM3) that are broadly and exclusively represented in the ligandome of CML cells. By providing for the first time HLA class I tumor associated antigens, directly obtained from the HLA ligandomes of CML patients, this study may pave the way for the future development of a multipeptide-based immunotherapy approach to eradicate residual CML cells after conventional TKI therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2540-2540
Author(s):  
Michael Schmitt ◽  
Li Li ◽  
Mark Ringhoffer ◽  
Thomas Barth ◽  
Markus Wiesneth ◽  
...  

Abstract To improve the clinical outcome of patients with acute myeloid leukemia (AML), immune therapies targeting leukemia associated antigens (LAAs) might be an approach complementary to chemotherapy and transplantation of hematopoetic stem cells. The receptor for hyaluronic acid mediated motility (RHAMM/CD168) has been defined as a LAA with specific expression. To define T cell epitopes of RHAMM/CD168 towards specific T cell immunotherapies, ten peptides were synthesized considering different computer algorithms and subjected to ELISPOT assays for interferon gamma and granzyme B, and to Cr-51 release assays. CD8+ T cells taken from the peripheral blood (PB) of 13 AML patients and presensitized with the RHAMM/CD168-derived peptides R3 (ILSLELMKL) or R5 (SLEENIVIL) did specifically recognize T2 cells pulsed with R3/R5. In contrast, CD8+ T cells isolated from the PB of 21 healthy volunteers were not able to lyse R3 or R5 pulsed T2 cells, even after presensitization. COS7 cells co-transfected with HLA-A*0201 and RHAMM/CD168 were lysed by R3 or R5 presensitized CD8+ T cells. Single HLA-A*0201 or RHAMM/CD168 transfected COS7 were not recognized. Cross-reactivity of the T cells was excluded by the use of unrelated peptides. K562 cells positive for RHAMM/CD168, but lacking HLA-class I molecules were not recognized indicating T cells and not NK cells as effector cells. The HLA class-I restricted lysis of COS-7 HLA-A*0201 and RHAMM/CD168 double- transfectants was confirmed by HLA class-I blocking antibody experiments. In an AML patient having received AML blast-derived dendritic cells, a higher frequency of RHAMM/CD168-peptide specific T cells was observed after four vaccinations when compared to his T cell status before vaccination. RHAMM/CD168 is also expressed in patients with other hematological malignancies which suggests a broad clinical applicability of its newly characterized T cell epitope peptides as a potential cancer vaccine.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lydon Wainaina Nyambura ◽  
Alejandro Azorin Muñoz ◽  
Philipp le Coutre ◽  
Peter Walden

Abstract Leukemia-associated antigens (LAAs) and HLA-I epitopes published previously have shown promise in inducing leukemia-specific T cell responses. However, the clinical responses are limited, and clinical effectiveness is yet to be achieved. Limitations, among others, being the LAAs themselves, the indirect approach to HLA-I epitope identification by reverse immunology, and the use of single or few LAAs and HLA-I epitopes, which limits the spectrum of inducible tumor-specific T cells. Use of a direct approach to identify naturally processed and presented HLA-I epitopes from LAAs, and higher numbers of antigens for T cell-mediated immunotherapy for leukemia may enhance clinical responses and broaden clinical effectiveness. In a prior study we used immunoaffinity purification of HLA-I peptide complexes from the differentiated myeloid tumor cell lines MUTZ3 and THP1 coupled to high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). From this we identified in the current study seven new HLA-I epitopes and the corresponding LAAs for myeloid leukemia. In comparison, the myeloid HLA-I epitopes reported here were generally stronger HLA-binders that induce stronger T cell responses than those previously published, and their source LAAs had higher immunogenicity, higher expression levels in myeloid tumors cells compared to normal hemopoietin and other major normal tissues, and more protein interaction partners, and they are targeted by CD8 T cells in CML patients. This study analyses and compares the LAAs and HLA-I epitopes based on various immunotherapeutic targets selection criteria, and highlights new targets for T cell-mediated immunotherapy for leukemia.


2019 ◽  
Vol 217 (3) ◽  
Author(s):  
Maren Lübke ◽  
Stefanie Spalt ◽  
Daniel J. Kowalewski ◽  
Cosima Zimmermann ◽  
Liane Bauersfeld ◽  
...  

In healthy individuals, immune control of persistent human cytomegalovirus (HCMV) infection is effectively mediated by virus-specific CD4+ and CD8+ T cells. However, identifying the repertoire of T cell specificities for HCMV is hampered by the immense protein coding capacity of this betaherpesvirus. Here, we present a novel approach that employs HCMV deletion mutant viruses lacking HLA class I immunoevasins and allows direct identification of naturally presented HCMV-derived HLA ligands by mass spectrometry. We identified 368 unique HCMV-derived HLA class I ligands representing an unexpectedly broad panel of 123 HCMV antigens. Functional characterization revealed memory T cell responses in seropositive individuals for a substantial proportion (28%) of these novel peptides. Multiple HCMV-directed specificities in the memory T cell pool of single individuals indicate that physiologic anti-HCMV T cell responses are directed against a broad range of antigens. Thus, the unbiased identification of naturally presented viral epitopes enabled a comprehensive and systematic assessment of the physiological repertoire of anti-HCMV T cell specificities in seropositive individuals.


2019 ◽  
Vol 48 (2) ◽  
pp. 030006051987732 ◽  
Author(s):  
Xiaoqing Wei ◽  
Lin He ◽  
Xiaodong Wang ◽  
Min Lin ◽  
Jingying Dai

Objective To investigate the immunomodulatory effects of the tyrosine kinase inhibitor (TKI) dasatinib on T-cell subtypes in patients with chronic myeloid leukemia (CML). Methods T helper (Th) 1, Th2, regulatory T (Treg), and CD8+T cell levels were detected in patients with CML (n = 9) before and after dasatinib treatment. The corresponding response level at the time of a blood test was evaluated. Results After dasatinib treatment, six patients achieved a better response level, while three did not show improved response levels. Among the total nine patients, there were no significant differences in Th1, Th2, and Treg cell levels, whereas CD8+T cell levels were significantly increased after dasatinib treatment compared with before treatment. When we analyzed the six patients who obtained a better response level, Th1 and CD8+T cell levels were significantly increased after dasatinib treatment, but Th2 and Treg cell levels did not change. The other three patients who did not have improved response levels showed decreased Th1 cell levels and increased Treg cell levels after treatment. Conclusions Dasatinib may increase Th1 and CD8+T cell levels, and decrease Treg cell levels in patients with CML. This finding might be associated with a good therapeutic response to this drug.


Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 3995-4003 ◽  
Author(s):  
Nicholas C. Wolff ◽  
Darren R. Veach ◽  
William P. Tong ◽  
William G. Bornmann ◽  
Bayard Clarkson ◽  
...  

AbstractImatinib mesylate is highly effective in newly diagnosed chronic myeloid leukemia (CML), but BCR/ABL (breakpoint cluster region/abelson murine leukemia)–positive progenitors persist in most patients with CML treated with imatinib mesylate, indicating the need for novel therapeutic approaches. In this study, we have used the murine CML-like myeloproliferative disorder as a platform to characterize the pharmacokinetic, signal transduction, and antileukemic properties of PD166326, one of the most potent members of the pyridopyrimidine class of protein tyrosine kinase inhibitors. In mice with the CML-like disease, PD166326 rapidly inhibited Bcr/Abl kinase activity after a single oral dose and demonstrated marked antileukemic activity in vivo. Seventy percent of PD166326-treated mice achieved a white blood cell (WBC) count less than 20.0 × 109/L (20 000/μL) at necropsy, compared with only 8% of imatinib mesylate–treated animals. Further, two thirds of PD166326-treated animals had complete resolution of splenomegaly, compared with none of the imatinib mesylate–treated animals. Consistent with its more potent antileukemic effect in vivo, PD166326 was also superior to imatinib mesylate in inhibiting the constitutive tyrosine phosphorylation of numerous leukemia-cell proteins, including the src family member Lyn. PD166326 also prolonged the survival of mice with imatinib mesylate–resistant CML induced by the Bcr/Abl mutants P210/H396P and P210/M351T. Altogether, these findings demonstrate the potential of more potent Bcr/Abl inhibitors to provide more effective antileukemic activity. Clinical development of PD166326 or a related analog may lead to more effective drugs for the treatment of de novo and imatinib mesylate–resistant CML.


Sign in / Sign up

Export Citation Format

Share Document