scholarly journals A Zebrafish Model of Cooperating C and N Terminal CEBPA Mutations Reveals Defects in Early Myelopoeisis and HSPCs Leading to Leukaemogenesis

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1343-1343
Author(s):  
Catherine Hockings ◽  
Victoria Deaner ◽  
Yvette Hoade ◽  
Phoebe Dace ◽  
Alex Lubin ◽  
...  

Abstract Acute Myeloid Leukaemia (AML) is thought to occur due to stepwise accumulation of mutations in haematopoietic stem and progenitor cells (HSPCs) or early myeloid progenitor cells (EMPs) to either block differentiation or increase proliferation. In around 10% of sporadic AML cases and several known germline predisposition kindreds the myeloid transcription factor CEBPA is mutated. 50% of cases possess biallelic mutations in both C and N terminae (dm) and 50% monoallelic mutation (sm). Using TALENs we have created both C and N terminal mutants in zebrafish to study their cooperating effects in the development of AML. Our first observation was of striking defects in mature myelocytes and monocytes in all double mutants (cebpamut/mut) as assessed by Sudan black staining at 5 days post fertilisation (dpf) and apoeb whole mount in situ hybridisation (WISH) at 3dpf. In situ hybridisation revealed defects in myelopoeisis in all cebpamut/mut fry as early as 28hpf, with markedly decreased expression of coronin and l-plastin. We then interrogated the model further to assess when and where the differentiation block was occurring. We utilised the transcription factor pu.1 both as an in vivo transgenic marker Tg(pu.1:GFP) and WISH probe at earlier time points. In primitive haematopoiesis (until 22hpf) pu.1 expression showed no defects in dm mutants. However, pu.1 expressing cells were markedly reduced in dm mutants in establishment of myelopoeisis in the caudal haematopoietic tissue (CHT), fetal liver equivalent. Following formation of the CHT at around 30hpf, differing patterns of pu.1 expression were seen in sm mutants, with cebpaWT/Cterm having significantly increased staining, which was reduced in cebpaWT/Nterm (see figure 1). HSPC numbers in cebpamut/mut were seen to be normal by WISH for gata2b and runx1 and flow cytometry in Tg(CD41:GFP) fry during early haematopoeisis (2-5dpf). However, myb expression was markedly increased at 36hpf and 3 days but only in cebpaCterm/Nterm and cebpaNterm/Nterm dm mutants (see figure 2). This suggests an accumulation of early progenitors with myeloid potential but not commitment, as implied by absence of pu.1 expression but normal CD41lo numbers and other stem cell marker expression. Absence of MCherry expression in the transgenic LysC:MCherry, which highlights mature myeloid cells in vivo, was sufficiently reliable to genotype all cebpamut/mut fry and observe them for impaired survival compared to wild-type and heterozygous siblings and for the development of leukaemia. Similarly to the increase in myb staining, leukaemic transformation was only observed in dm mutants with at least one N terminal mutation, as assessed by development of anaemia and florid Tg(CD41:GFP) expression. Flow cytometry in juvenile fish (4-6weeks) also identifies a developing pre-leukaemic phenotype with moderate yet significant expansion of HSPCs and continuing absence LysC expression in cebpaNterm/Cterm and cebpaNTerm/NTerm. However, survival is poor in all dm fish, likely due to the metabolic role of cebpa and vulnerability to infection secondary to the severe myelomonocytic defect. Our results show that absence of WT cebpa has dramatic effects myelopoiesis from early stages of differentiation in definitive haematopoiesis. In addition, accumulation of myb expressing progenitors occurs as they arise from the aorta in dm mutants, identifying this as a sub-population of HSPC vulnerable to further leukaemogenic hits. Ongoing work will define the mechanism of these effects in sm and dm mutants and include comparative expression profiling in myb and pu.1 positive cells. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1296-1296
Author(s):  
Laleh S. Arabanian ◽  
Michael Haase ◽  
Ivonne Habermann ◽  
Malte von Bonin ◽  
Claudia Waskow ◽  
...  

Abstract Abstract 1296 Understanding the transcriptional mechanisms that control hematopoiesis and the interaction between hematopoietic stem cells and the bone marrow microenvironment in vivo is of considerable interest. We have previously shown that aged mice lacking the transcription factor NFATc2 develop bone marrow hypoplasia, anemia, and extramedullary hematopoiesis in spleen and liver. The proliferation and differentiation of NFATc2-deficient hematopoietic progenitor cells (HPC) ex vivo, however, was found to be intact. It remained therefore unclear whether the disturbed hematopoiesis in NFATc2-deficient mice was caused by the hematopoietic or the stroma component of the bone marrow hematopoietic niche. In the current study we dissected the relative contribution of hematopoietic and stroma cells to the phenotype of the NFATc2-deficent mice by transplanting immunomagnetically purified NFATc2-deficient (ko) HPCs to lethally irradiated wildtype (wt) mice, and vice versa. After a posttransplantation period of 6–8 months, peripheral blood, bone marrow as well as spleen and liver of the transplanted animals were analyzed and compared to wt and ko mice transplanted with control cells. Transplantation of NFATc2-deficient HPCs into wt recipients (ko → wt) induced similar hematological abnormalities as those occurring in non-transplanted ko mice or in ko mice transplanted with ko cells (ko → ko). Compared to wt mice transplanted with wt cells (wt → wt), ko → wt mice showed evidence of anemia, thrombocytopenia and a significantly reduced number of hematopoietic cells in their bone marrow. Likewise, ko → wt mice developped clear signs of extramedullary hematopoiesis in spleen and liver, which was not the case in wt → wt control animals. Our data demonstrate for the first time, that NFAT transcription factors directly regulate the intrinsic function of hematopoietic progenitor cells in vivo. The transcriptional targets for NFAT in these cells are yet unknown and are the focus of further investigations. Disclosures: No relevant conflicts of interest to declare.


Development ◽  
1997 ◽  
Vol 124 (17) ◽  
pp. 3263-3272 ◽  
Author(s):  
T. Roztocil ◽  
L. Matter-Sadzinski ◽  
C. Alliod ◽  
M. Ballivet ◽  
J.M. Matter

Genes encoding transcription factors of the helix-loop-helix family are essential for the development of the nervous system in Drosophila and vertebrates. Screens of an embryonic chick neural cDNA library have yielded NeuroM, a novel neural-specific helix-loop-helix transcription factor related to the Drosophila proneural gene atonal. The NeuroM protein most closely resembles the vertebrate NeuroD and Nex1/MATH2 factors, and is capable of transactivating an E-box promoter in vivo. In situ hybridization studies have been conducted, in conjunction with pulse-labeling of S-phase nuclei, to compare NeuroM to NeuroD expression in the developing nervous system. In spinal cord and optic tectum, NeuroM expression precedes that of NeuroD. It is transient and restricted to cells lining the ventricular zone that have ceased proliferating but have not yet begun to migrate into the outer layers. In retina, NeuroM is also transiently expressed in cells as they withdraw from the mitotic cycle, but persists in horizontal and bipolar neurons until full differentiation, assuming an expression pattern exactly complementary to NeuroD. In the peripheral nervous system, NeuroM expression closely follows cell proliferation, suggesting that it intervenes at a similar developmental juncture in all parts of the nervous system. We propose that availability of the NeuroM helix-loop-helix factor defines a new stage in neurogenesis, at the transition between undifferentiated, premigratory and differentiating, migratory neural precursors.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2198-2203 ◽  
Author(s):  
Liquan Gao ◽  
Ilaria Bellantuono ◽  
Annika Elsässer ◽  
Stephen B. Marley ◽  
Myrtle Y. Gordon ◽  
...  

Abstract Hematologic malignancies such as acute and chronic myeloid leukemia are characterized by the malignant transformation of immature CD34+ progenitor cells. Transformation is associated with elevated expression of the Wilm's tumor gene encoded transcription factor (WT1). Here we demonstrate that WT1 can serve as a target for cytotoxic T lymphocytes (CTL) with exquisite specificity for leukemic progenitor cells. HLA-A0201– restricted CTL specific for WT1 kill leukemia cell lines and inhibit colony formation by transformed CD34+ progenitor cells isolated from patients with chronic myeloid leukemia (CML), whereas colony formation by normal CD34+ progenitor cells is unaffected. Thus, the tissue-specific transcription factor WT1 is an ideal target for CTL-mediated purging of leukemic progenitor cells in vitro and for antigen-specific therapy of leukemia and other WT1-expressing malignancies in vivo.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3728-3728 ◽  
Author(s):  
Shruti Bhatt ◽  
Brittany Ashlock ◽  
Yaso Natkunam ◽  
Juan Carlos Ramos ◽  
Enrique Mesri ◽  
...  

Abstract Abstract 3728 Primary effusion lymphoma (PEL) is a distinct and aggressive subtype of non-Hodgkin lymphoma (NHL) commonly presenting with pleural, peritoneal, or pericardial malignant effusions usually without a contiguous tumor mass. PEL is most commonly diagnosed in HIV-positive patients, accounting for 4% of all NHLs in this population, yet may also develop in immunosuppressed HIV-negative individuals. While Human Herpes Virus 8 (HHV8 or Kaposi's sarcoma-associated herpesvirus) is directly implicated in the oncogenesis of this lymphoma, most PEL cases are also associated with Epstein-Barr virus and the combination of the two may facilitate transformation. The tumor cells exhibit plasmablastic features and express CD45, CD38, CD138, HHV8 and CD30. PEL is an aggressive tumor characterized by a short median survival of only 6 months with current therapeutic approaches underscoring the urgent need for development of new therapeutics. Brentuximab vedotin (SGN-35) is an antibody-drug conjugate (ADC) comprised of an anti-CD30 monoclonal antibody cAC10 conjugated by a protease-cleavable dipeptide linker to a potent cell killing agent monomethyl auristatin E (MMAE). Following binding to CD30, brentuximab vedotin is rapidly internalized and is transported to lysosomes, where the peptide linker is selectively cleaved allowing binding of the released MMAE to tubulin and leading to cell cycle arrest and apoptosis. Brentuximab vedotin was recently reported to have promising antitumor activity in CD30 expressing tumors, such as Hodgkin and Anaplastic large cell lymphomas. Since PEL tumors are reported to express CD30, we have hypothesized that brentuximab vedotin might be effective in the treatment of this NHL subtype. Initially, we have confirmed by flow cytometry the expression of CD30 on PEL cell lines (UM-PEL 1, UM-PEL 3, BC-1 and BC-3), and by review of immunohistochemistry and flow cytometry results in patients with previous diagnosis of PEL at our institution. To examine in vitro potency of brentuximab vedotin, UM-PEL 1, UM-PEL 3, BC-1 and BC-3 PEL cell lines were treated with brentuximab vedotin at concentration ranging from 0–100 micrograms/ml. Staining with YO-PRO and Propidium Iodide (PI) demonstrated dose dependent cell apoptosis and death in all the cell lines at 72 hours post treatment. In contrast, control IgG conjugated with MMAE failed to induce apoptosis and cell death of PEL cell lines confirming specific brentuximab vedotin cytotoxicity. Furthermore, brentuximab vedotin decreased proliferation of PEL cells at 48 hours leading to a complete proliferation arrest at 72 hours, as measured by MTS assay. These effects were absent after equivalent doses of control IgG conjugated drug treatment. Supportive to this, labeling of cells with PI to detect active DNA content by flow cytometry showed that bretuximab vedotin induced growth arrest in G2/M phase. To further establish the anti-tumor potential of brentuximab vedotin in vivo, we used the direct xenograft UM-PEL 1 model, established in our laboratory (Sarosiek, PNAS 2010), which mimics human PEL tumors. UM-PEL 1 bearing mice were injected intraperitoneally 3 times a week with brentuximab vedotin or control IgG conjugated MMAE for 4 weeks. Brentuximab vedotin treatment markedly prolonged overall survival of UM-PEL-1 bearing mice compared to controls (p Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 65-65
Author(s):  
Warren Fiskus ◽  
Jacqueline Smith ◽  
Uma Mudunuru ◽  
Stacey Hembruff ◽  
Ruben Reyes ◽  
...  

Abstract Abstract 65 The canonical WNT-β-catenin pathway is essential to the cellular processes of self-renewal, growth and survival. Deregulated WNT-β-catenin in transformed hematopoietic progenitor cells inhibits the multi-protein degradation complex formed by axin, adenomatous polyposis coli (APC) and glycogen synthase kinase 3β (GSK3β). This results in the preservation, nuclear translocation and interaction of β-catenin with the T-cell factor (TCF)/lymphoid enhancer factor (LEF) transcription factor, which regulates the expression of genes such as cyclin D1, Myc, survivin and Axin. BC2059 (β-Cat Pharmaceuticals) is a potent small molecule, anthraquinone oxime-analog inhibitor of the WNT-β catenin pathway. Treatment with BC2059 mediates the degradation of β-catenin. In the present studies, we determined the activity of BC2059 in human cultured and primary CML and advanced MPN versus normal progenitor cells. Exposure to 50 to 100 nM of BC2059 induced cell cycle G1 phase accumulation and apoptosis (40 to 80%) of the cultured MPN cells HEL92.1.7 (HEL) and UKE1 cells expressing the mutant JAK2V617F, as well as of the CML K562 and LAMA-84 cells expressing BCR-ABL. BC2059 treatment also induced apoptosis of CD34+ primary MPN cells derived from the peripheral blood of patients with advanced MPN expressing mutant JAK2, as well as of primary CD34+ CML progenitor cells. In contrast, as compared to the untreated controls, BC2059 treatment did not induce apoptosis of normal CD34+ progenitor cells. Exposure to BC2059 resulted in marked down regulation of β-catenin protein levels and the activity of the LEF1/TCF4 transcription factor, which was accompanied with reduced levels of cyclin D1, MYC, survivin and up regulation of Axin 2 levels, as detected by immunoblot analyses of the cell lysates of BC2059-treated CML and MPN cells. We also determined the in vivo anti-MPN activity of BC2059. Following the tail vein infusion of HEL cells and establishment of MPN, NOD-SCID mice were treated with 15 or 20 mg/Kg of BC2059 administered b.i.w for three weeks via the tail vein. As compared to the control, BC2059-treated mice demonstrated significantly improved survival (p <0. 001). Next, we examined the effects of co-treatment with BC2059 (20 to 50 nM) and JAK2-targeted TKI TG101209 (TG) (200–1000 nM) or BCR-ABL-targeted TKI nilotinib (10–20 nM) against MPN or CML cells, respectively. As compared to treatment with each agent alone co-treatment with BC2059 and TG synergistically induced apoptosis of HEL and primary CD34+ MPN cells. Additionally, co-treatment with BC2059 and nilotinib induced synergistic apoptosis of K562 and primary CML progenitor cells. Further, combined treatment with BC2059 and the HDAC inhibitor panobinostat (10 to 20 nM) also induced significantly more apoptosis of HEL and K562 (p < 0.01), as well as of the primary CD34+ MPN and primary CML progenitor cells. In normal CD34+ progenitor cells, the BC2059-based combinations were remarkably less toxic (p < 0.01). These findings demonstrate that BC2059 exerts notable in vitro and in vivo activity against human MPN and CML versus normal CD34+ progenitor cells. Additionally, BC2059 may exert superior activity in combination with JAK2 or BCR-ABL-targeted TKI, or with pan-HDAC inhibitor against human MPN or CML progenitor cells. Disclosures: Reyes: Millennium, Sanofi Aventis: Consultancy. Horrigan:BetaCat Pharmaceuticals: Employment, Equity Ownership. Sharma:Beta Cat Pharmaceuticals: Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 650-650
Author(s):  
Cailin Collins ◽  
Jingya Wang ◽  
Joel Bronstein ◽  
Jay L. Hess

Abstract Abstract 650 HOXA9 is a homeodomain-containing transcription factor that plays important roles in both development and hematopoiesis. Deregulation of HOXA9 occurs in a variety of acute lymphoid and myeloid leukemias and plays a key role in their pathogenesis. More than 50% of acute myeloid leukemia (AML) cases show up-regulation of HOXA9, which correlates strongly with poor prognosis. Nearly all cases of AML with mixed lineage leukemia (MLL) translocations have increased HOXA9 expression, as well as cases with mutation of the nucleophosmin gene NPM1, overexpression of CDX2, and fusions of NUP98. Despite the crucial role that HOXA9 plays in development, hematopoiesis and leukemia, its transcriptional targets and mechanisms of action are poorly understood. Previously we identified Hoxa9 and Meis1 binding sites in myeloblastic cells, profiled their epigenetic modifications, and identified the target genes regulated by Hoxa9. Hoxa9 and Meis1 co-bind at hundreds of promoter distal, highly evolutionarily conserved sites showing high levels of histone H3K4 monomethylation and CBP/p300 binding characteristic of enhancers. Hoxa9 association at these sites correlates strongly with increases in histone H3K27 acetylation and activation of downstream target genes, including many proleukemic gene loci. De novo motif analysis of Hoxa9 binding sites shows a marked enrichment of motifs for the transcription factors in the C/EBP and ETS families, and C/ebpα and the ETS transcription factor Pu.1 were found to cobind at Hoxa9-regulated enhancers. Both C/ebpα and Pu.1 are known to play critical roles in the establishment of functional enhancers during normal myeloid development and are mutated or otherwise deregulated in various myeloid leukemias. To determine the importance of co-association of Hoxa9, C/ebpα and Pu.1 at myeloid enhancers, we generated cell lines from C/ebpα and Pu.1 conditional knockout mice (kindly provided by Dr. Daniel Tenen, Harvard University) by immortalization with Hoxa9 and Meis1. In addition we transformed bone marrow with a tamoxifen-regulated form of Hoxa9. Strikingly, loss of C/ebpα or Pu.1, or inactivation of Hoxa9, blocks proliferation and leads to myeloid differentiation. ChIP experiments show that both C/ebpα and Pu.1 remain bound to Hoxa9 binding sites in the absence of Hoxa9. After the loss of Pu.1, both Hoxa9 and C/ebpα dissociate from Hoxa9 binding sites with a corresponding decrease in target gene expression. In contrast, loss of C/ebpα does not lead to an immediate decrease in either Hoxa9 or Pu.1 binding, suggesting that C/ebpα may be playing a regulatory as opposed to a scaffolding role at enhancers. Current work focuses on performing ChIP-seq analysis to assess how C/ebpα and Pu.1 affect Hoxa9 and Meis1 binding and epigenetic modifications genome-wide, and in vivo leukemogenesis assays to confirm the requirement of both Pu.1 and C/ebpα in the establishment and maintenance of leukemias with high levels of Hoxa9. Collectively, our findings implicate C/ebpα and Pu.1 as members of a critical transcription factor network required for Hoxa9-mediated transcriptional regulation in leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 769-769
Author(s):  
Petra Vlckova ◽  
Libor Stanek ◽  
Pavel Burda ◽  
Karin Vargova ◽  
Filipp Savvulidi ◽  
...  

Abstract Abstract 769 Introduction: Downregulation of tumour suppressor transcription factor PU.1 in haematopoietic stem and progenitor cells represents primary underlying mechanism for the development of acute myeloid leukaemia (AML) in mice with homozygous deletion of the upstream regulatory element (URE) of PU.1 gene. Human AML often display differences in aggressiveness that are associated with mutations of a well known tumour suppressor p53. We produced murine model carrying mutations of p53 and URE that develops highly aggressive AML and focused on molecular mechanisms that are responsible for AML aggressiveness. Mouse models: PU.1ure/ure (Rosenbauer F, et al. 2004) and p53−/− (Jacks T, et al. 1994) mice were used. Conditional deletion of the URE leads to downregulation of PU.1 and is marked by clonal accumulation of myeloid c-Kit+Mac-1low Gr-1low blast cells within bone marrow, spleen, and peripheral blood mirrored by lower numbers of lymphoid and erythroid cells. AML development in PU.1ure/ure mice involves a preleukaemic phase (at 2–3 months) marked by proliferation of myeloid c-Kit+Gr-1+ cells and splenomegaly. Interestingly, p53−/−mice do not develop AML, instead loss of p53 predisposes mice to solid tumours, mostly lymphomas, by 6 months of age. Results: Deletion of TP53 in the PU.1ure/ure mice (PU.1ure/ure p53−/−) results in more aggressive AML with significantly shortened overall survival, prominent hepatosplenomegaly and cachexia (wasting syndrome). Mild differences in cell surface phenotype of bone marrow derived cells were observed between PU.1ure/ure and PU.1ure/ure p53−/− mice by flow cytometry (these included: blasts expansion and lymphopenia). Next, the PU.1 expression was determined in all genotypes at progenitor and stem cell levels. PU.1 mRNA level in more aggressive PU.1ure/ure p53−/− murine AML is decreased in the entire c-Kit+tumour cell population compared to AML in PU.1ure/ure mice including haematopoietic stem and progenitor cells (HSPCs). Correspondingly to RNA level, in the PU.1ure/ure progenitors the PU.1 protein was decreased compared to p53−/− progenitors and is yet further reduced in the PU.1ure/ure p53−/− c-Kit+ Mac1+progenitors. p53−/− progenitors express similar level of PU.1 as wild type progenitors indicating that despite p53 can bind DNA as a transcription factor, it does not regulate PU.1 level directly. In addition to URE deletion we searched for other mechanisms that control PU.1 levels and found that PU.1-inhibiting microRNA miR-155 gene display altered chromatin structure and expression of both pri-miR-155 as well as its spliced mature form in the AML of PU.1ure/ure and (to higher extent in) PU.1ure/ure p53−/− murine progenitors. Upregulation of miR-155 coincides with upregulation of the Mir155hg activators: Myc and Myb. Finally, upon inhibition of either Myb or miR-155 in vitro the AML progenitors restore PU.1 levels and lose leukaemic cell growth. Conclusion: In summary, PU.1 and p53 double mutant mice develop aggressive AML with dysplastic features. Defective control of PU.1 levels in PU.1ure/ure and PU.1ure/ure p53−/−AML involves miR-155. Lastly, restored PU.1 level and cell differentiation capacity are achieved by inhibiting either Myb or miR-155 in the PU.1ure/ure p53−/− progenitors. (Grant support: P305/12/1033, UNCE 204021, PRVOUK-P24/LF1/3, SVV-2012-264507, P301/12/P380. MK was sponsored by GAUK 251070 45410, 251135 82210) Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3621-3621 ◽  
Author(s):  
Jonathan C Snedeker ◽  
Tamara M Burleson ◽  
Raoul Tibes ◽  
Christopher C. Porter

Abstract Introduction: Successful treatment of AML remains dependent upon cytotoxic chemotherapy. However, traditional regimens are not well tolerated by older patients who are at highest risk of disease, and salvage rates after relapse are low, necessitating novel therapeutic strategies. Our groups identified Wee1 as a potential therapeutic target in AML, particularly in the context of concomitant treatment with cytarabine (Tibes et al, Blood, 2012; Porter et al, Leukemia, 2012). Wee1 inhibits CDK1&2 via phosphorylation thereby stalling cell cycle progression. One consequence of Wee1 inhibition/CDK1 activation is impairment of DNA repair via homologous recombination (Krajewska et al, Oncogene, 2013). Cells in which HR is impaired are dependent upon Parp1/2 function, and HR deficient cells are particularly sensitive to Parp1/2 inhibition. Therefore, we hypothesized that combined Wee1 and Parp1/2 inhibition may result in greater inhibition of AML cell proliferation and survival than either alone. Methods: Human AML cell lines, MV4-11 and Molm-13, and a mouse AML that expresses MLL-ENL/FLT3-ITD were cultured with various concentrations of a Wee1 inhibitor (AZ1775) and a Parp1/2 inhibitor (olaparib) and counted 72 hours later by propidium iodide exclusion and flow cytometry. In some experiments, cells were split into fresh media to recover for 72 more hours. Combination Index (CI) values were calculated by the method of Chou and Talalay. Apoptosis was measured using Annexin V/7AAD and flow cytometry. Western blots were used to confirm inhibition of CDK1/2 phosphorylation and to measure DNA damage induction (gamma-H2AX). Results: Combined inhibition of Wee1 and Parp1/2 was synergistic, as measured by cell numbers at 72 hours, in all 3 cell lines tested, with combination index values ranging from 0.3 to 0.9. When cells were allowed to recover after treatment, those treated by single agents were able to continue proliferating. However, those treated with the combination did not recover as well or at all, indicating greatly impaired proliferative capacity. Combined inhibition of Wee1 and Parp1/2 also resulted in a significant increase in apoptosis greater than either drug alone. Western blots for gamma-H2AX confirmed that the combination of Wee1 and Parp1/2 resulted in more DNA damage than either drug alone. Discussion: Combined inhibition of Wee1 and Parp1/2 results in greater inhibition of AML cell proliferation, DNA damage and apoptosis than either drug alone. Future studies will include experiments with primary patient samples, as well as in vivo trials combining Wee1 inhibition with Parp1/2 inhibition. These preliminary studies raise the possibility of rational combinations of targeted agents for leukemia in those for whom conventional chemotherapeutics may not be well tolerated. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4316-4316
Author(s):  
Hendrik Folkerts ◽  
Maria Catalina Gomez Puerto ◽  
Albertus T.J. Wierenga ◽  
Koen Schepers ◽  
Jan Jacob Schuringa ◽  
...  

Abstract Macroautophagy is a catabolic process by which intracellular contents are delivered to lysosomes for degradation. ATG5 and ATG7 play an essential role in this process. Recent studies have shown that mouse hematopoietic stem cells (HSCs) lacking ATG7 were unable to survive in vivo, however, the role of macroautophagy in proliferation and survival of human HSCs has not yet been defined. Here, we demonstrate that autophagy is functional in human hematopoietic stem/progenitor cells. Robust accumulation of the autophagy markers LC3 and p62 were observed in cord blood (CB)-derived CD34+ cells treated with bafilomycin-A1 (BAF) or hydroxychloroquine (HCQ), as defined by Western blotting. When these cells were subsequently differentiated towards the myeloid or erythroid lineage, a decreased accumulation of LC3 was observed. In addition, CB CD34+CD38- cells showed enhanced accumulation of cyto-ID (a marker for autophagic vesicles) compared to CD34+CD38+ progenitor cells upon BAF or HCQ treatment. In line with these results, also more mature CB CD33+ and CD14+ myeloid cells or CD71+CD235+ erythroid cells showed reduced levels of cyto-ID accumulation upon BAF or HCQ treatment. These findings indicate that human hematopoietic stem and progenitor cells (HSPCs) have a higher basal autophagy flux compared to more differentiated cells. To study the functional consequences of autophagy in human HSCs and their progeny, ATG5 and ATG7 were downregulated in CB-derived CD34+ cells, using a lentiviral shRNA approach which resulted in 80% and 70% reduced expression, respectively. Downmodulation of ATG5 or ATG7 in CB CD34+ cells resulted in a significant reduction of erythroid progenitor frequencies, as assessed by colony forming cell (CFC) assays (shATG5 2.2 fold, p<0.05 or shATG7 1.4 fold p<0.05). Additionally, a strong reduction in expansion was observed when transduced cells were cultured under myeloid (shATG5 17.9 fold, p<0.05 or shATG7 12.3 fold, p<0.05) or erythroid permissive conditions (shATG5 6.7 fold, p<0.05 or shATG7 1.7 fold, p<0.05), whereby differentiation was not affected. The phenotype upon knockdown of ATG5 or ATG7 could not be reversed by culturing the cells on a MS5 stromal layer. In addition to progenitor cells, HSCs were also affected since long term culture-initiating cell (LTC-IC) assays in limiting dilution revealed a 3-fold reduction in stem cell frequency after ATG5 and ATG7 knockdown. The inhibitory effects of shATG5 and shATG7 in cultured CD34+ cells were at least in part due to a decline in the percentage of cells in S phase and (shATG5 1.4 fold, p<0.01 and shATG7 1.3 fold, p<0.01) and an increase of Annexin V positive cells. The changes in cell cycle and apoptosis coincided with a marked increase in expression of the cell cycle-dependent kinase inhibitor p21, an increase in p53 levels, and an increase in proapoptotic downstream target genes BAX, PUMA and PHLDA3. Additionally, ROS levels were increased after ATG5 and ATG7 knockdown. The increased apoptosis in shATG5 and shATG7 transduced cells might be triggered by elevated ROS levels. Taken together, our data demonstrate that autophagy is an important survival mechanism for human HSCs and their progeny. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4718-4718
Author(s):  
Mayte Medrano ◽  
María Victoria Barbado-Gonzalez ◽  
Nuria Campillo ◽  
Francisco Hidalgo ◽  
Teresa Caballero-Velazquez ◽  
...  

Abstract Endocannabinoid system is a set of ligands, receptors and endogenous enzymes which modulate a variety of physiological effects. There are two well-characterized cannabinoid receptors, CB1 (mainly expressed in Central Nervous System) and CB2 (mainly in hematopoietic cells). Here, we tested the effect of the cannabinoid WIN-55 212-2 in acute myeloid leukemia (AML) in vitro, ex vivo and in vivo and studied the molecular signaling pathways involved in this effect. Moreover, we synthesized a new family of twelve cannabinoids that are specific to CB2 receptor. For their design and synthesis, computational techniques of docking, analytical and spectroscopic techniques such as mass spectrometry (MS) were used. To assess the anti-leukemia effect of the different cannabinoids, we analyzed cell viability by MTT and flow cytometry using six human AML cell lines, primary cells from healthy donors (hematopoietic progenitor cells (HPC) and lymphocytes) and blasts from AML patients. Cannabinoids induced a potent proapoptotic effect on AML cell lines and on primary leukemic cells, which was not observed in normal HPC and lymphocytes from healthy donors. Fragmentation of PARP and activation of caspases 2, 3, 8 and 9 were confirmed by western-blot. Other proteins involved in the effect of cannabinoids were p-AKT, p-ERK 1/2, p-38 and p- JNK. Also studies on p-PERK, p-IRE1 and CHOP confirmed an increased endoplasmic reticulum stress upon exposure to cannabinoids. Mitochondrial damage was analyzed by flow cytometry using TMRE and by MitoSOXTMRed. These assays confirmed a very early mitochondrial damage in leukemic cells which was not observed in normal hematopoietic progenitor cells. Moreover, we analyzed the ceramide levels, a membrane lipid associated with death/survival cell processes by HPLC and immunohistochemistry. Remarkably, we observed significant differences in the amounts of certain subtypes of ceramides in untreated versus treated leukemic cells. The proapoptotic effect of cannabinoids on AML cells was abolished upon co-culture with either CB2 receptor antagonists or with pancaspase inhibitors. Finally, NOD/scid/IL-2R gammae null (NSG) mice were xenotransplanted with HL60 cell line. We confirmed disease infiltration in bone marrow (BM) by BM aspirates and flow cytometry assays. Once the presence of leukemic cells was confirmed, treatment with vehicle, WIN-55 cannabinoid at a dose of 5 mg/kg/day or citarabine (ARA-C) at 50 mg/kg during 5 days was administered. We observed a significantly increased survival among mice treated with WIN-55 cannabinoid as compared to both the control group and the group treated with ARA-C. In addition, we tested in vivo the effect of these compounds on normal hematopoiesis by treating healthy BALB-C mice. We confirmed that cannabinoids did not affect the viability of the different populations of hematopoietic progenitors (LK, GMP, CMP) and, moreover, an increased platelet count was observed in treated mice. Our findings indicate that cannabinoids display a highly selective proapoptotic effect against leukemic cells. Several pathways are involved in this effect, the modification in the ceramide pattern playing a main role. Figure 1 Figure 1. Figure 2 Figure 2. Figure 3 Figure 3. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document