Combined Inhibition of Wee1 and Poly(ADP Ribose) Polymerase1/2 Synergistically Inhibits Acute Myeloid Leukemia Cells By Enhancing DNA Damage and the Induction of Apoptosis

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3621-3621 ◽  
Author(s):  
Jonathan C Snedeker ◽  
Tamara M Burleson ◽  
Raoul Tibes ◽  
Christopher C. Porter

Abstract Introduction: Successful treatment of AML remains dependent upon cytotoxic chemotherapy. However, traditional regimens are not well tolerated by older patients who are at highest risk of disease, and salvage rates after relapse are low, necessitating novel therapeutic strategies. Our groups identified Wee1 as a potential therapeutic target in AML, particularly in the context of concomitant treatment with cytarabine (Tibes et al, Blood, 2012; Porter et al, Leukemia, 2012). Wee1 inhibits CDK1&2 via phosphorylation thereby stalling cell cycle progression. One consequence of Wee1 inhibition/CDK1 activation is impairment of DNA repair via homologous recombination (Krajewska et al, Oncogene, 2013). Cells in which HR is impaired are dependent upon Parp1/2 function, and HR deficient cells are particularly sensitive to Parp1/2 inhibition. Therefore, we hypothesized that combined Wee1 and Parp1/2 inhibition may result in greater inhibition of AML cell proliferation and survival than either alone. Methods: Human AML cell lines, MV4-11 and Molm-13, and a mouse AML that expresses MLL-ENL/FLT3-ITD were cultured with various concentrations of a Wee1 inhibitor (AZ1775) and a Parp1/2 inhibitor (olaparib) and counted 72 hours later by propidium iodide exclusion and flow cytometry. In some experiments, cells were split into fresh media to recover for 72 more hours. Combination Index (CI) values were calculated by the method of Chou and Talalay. Apoptosis was measured using Annexin V/7AAD and flow cytometry. Western blots were used to confirm inhibition of CDK1/2 phosphorylation and to measure DNA damage induction (gamma-H2AX). Results: Combined inhibition of Wee1 and Parp1/2 was synergistic, as measured by cell numbers at 72 hours, in all 3 cell lines tested, with combination index values ranging from 0.3 to 0.9. When cells were allowed to recover after treatment, those treated by single agents were able to continue proliferating. However, those treated with the combination did not recover as well or at all, indicating greatly impaired proliferative capacity. Combined inhibition of Wee1 and Parp1/2 also resulted in a significant increase in apoptosis greater than either drug alone. Western blots for gamma-H2AX confirmed that the combination of Wee1 and Parp1/2 resulted in more DNA damage than either drug alone. Discussion: Combined inhibition of Wee1 and Parp1/2 results in greater inhibition of AML cell proliferation, DNA damage and apoptosis than either drug alone. Future studies will include experiments with primary patient samples, as well as in vivo trials combining Wee1 inhibition with Parp1/2 inhibition. These preliminary studies raise the possibility of rational combinations of targeted agents for leukemia in those for whom conventional chemotherapeutics may not be well tolerated. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2894-2894 ◽  
Author(s):  
Ritika Dutta ◽  
Maria Castellanos ◽  
Bruce Tiu ◽  
Hee-Don Chae ◽  
Kara L. Davis ◽  
...  

Abstract The 90 kDa Ribosomal S6 Kinase (RSK), downstream of the ERK signaling pathway, has recently been implicated in a wide variety of cancers, ranging from lung cancer to medulloblastoma, as a driver of cancer cell proliferation and survival. However, its role in Acute Myeloid Leukemia (AML) remains unknown. Thus, the goal of this study was to characterize RSK-dependent signaling pathways in AML, with the overall hypothesis that disruption of this pathway represents a potential strategy for the treatment of AML. The RSK family consists of four gene isoforms, RSK1-4 (RPS6KA1 (RSK1), RPS6KA2 (RSK3), RPS6KA3 (RSK2), RPS6KA4 (RSK4). Knockdown (KD) of RSK1 by shRNA in HL-60 and KG-1 cell lines resulted in reduced AML cell growth in vitro. NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were injected with 2x106 HL-60 or KG-1 RSK1KD cells and vector control transduced cells in order to investigate the effects of RSK1 KD on AML cell growth and survival in vivo. Mice injected with RSK1 KD cells exhibited prolonged survival by 17 and 21 days respectively for HL-60 and KG-1 cell induced disease (p=0.0023 and 0.0018 respectively). These data indicate that RSK1 knockdown inhibits leukemia progression, and RSK1 is required for maximal proliferation of AML cells in vivo. Pharmacological inhibition of total RSK (RSK1-4) by the small molecule inhibitor BI-D1870 reduced AML cell growth and induced cell death in both AML cell lines and patient samples after treatment for 48 hours. The IC50 for growth inhibition was 1.8 uM for MOLM-13, 1.6 uM for MV-4-11, and 1.9 uM for HL-60 cells. In methylcellulose colony assays, normal hematopoietic stem and progenitor cell proliferation was not affected by RSK inhibition up to a concentration of 15 uM, establishing an approximately 10-fold therapeutic index. To elucidate the mechanism by which RSK inhibition suppresses AML proliferation, we performed cell cycle analysis with HL-60 cells. RSK inhibition by BI-D1870 resulted in delayed S-phase progression and accumulation of cells in late S-phase with increased pH2AX, cPARP, and CDK2/Cyclin A expression, as measured by flow cytometry. These data indicate that inhibition of RSK leads to activation of DNA damage pathways and arrest in S-phase, resulting in apoptosis. Inhibition of CDK activity rescued S-phase arrest, demonstrating that activation and dysregulation of CDK are crucial mediators of RSK inhibitor-induced S-phase arrest. In summary, this is the first study to demonstrate that RSK plays an important role in maintaining AML cell survival and proliferation and to position RSK as a promising target for treatment of AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3728-3728 ◽  
Author(s):  
Shruti Bhatt ◽  
Brittany Ashlock ◽  
Yaso Natkunam ◽  
Juan Carlos Ramos ◽  
Enrique Mesri ◽  
...  

Abstract Abstract 3728 Primary effusion lymphoma (PEL) is a distinct and aggressive subtype of non-Hodgkin lymphoma (NHL) commonly presenting with pleural, peritoneal, or pericardial malignant effusions usually without a contiguous tumor mass. PEL is most commonly diagnosed in HIV-positive patients, accounting for 4% of all NHLs in this population, yet may also develop in immunosuppressed HIV-negative individuals. While Human Herpes Virus 8 (HHV8 or Kaposi's sarcoma-associated herpesvirus) is directly implicated in the oncogenesis of this lymphoma, most PEL cases are also associated with Epstein-Barr virus and the combination of the two may facilitate transformation. The tumor cells exhibit plasmablastic features and express CD45, CD38, CD138, HHV8 and CD30. PEL is an aggressive tumor characterized by a short median survival of only 6 months with current therapeutic approaches underscoring the urgent need for development of new therapeutics. Brentuximab vedotin (SGN-35) is an antibody-drug conjugate (ADC) comprised of an anti-CD30 monoclonal antibody cAC10 conjugated by a protease-cleavable dipeptide linker to a potent cell killing agent monomethyl auristatin E (MMAE). Following binding to CD30, brentuximab vedotin is rapidly internalized and is transported to lysosomes, where the peptide linker is selectively cleaved allowing binding of the released MMAE to tubulin and leading to cell cycle arrest and apoptosis. Brentuximab vedotin was recently reported to have promising antitumor activity in CD30 expressing tumors, such as Hodgkin and Anaplastic large cell lymphomas. Since PEL tumors are reported to express CD30, we have hypothesized that brentuximab vedotin might be effective in the treatment of this NHL subtype. Initially, we have confirmed by flow cytometry the expression of CD30 on PEL cell lines (UM-PEL 1, UM-PEL 3, BC-1 and BC-3), and by review of immunohistochemistry and flow cytometry results in patients with previous diagnosis of PEL at our institution. To examine in vitro potency of brentuximab vedotin, UM-PEL 1, UM-PEL 3, BC-1 and BC-3 PEL cell lines were treated with brentuximab vedotin at concentration ranging from 0–100 micrograms/ml. Staining with YO-PRO and Propidium Iodide (PI) demonstrated dose dependent cell apoptosis and death in all the cell lines at 72 hours post treatment. In contrast, control IgG conjugated with MMAE failed to induce apoptosis and cell death of PEL cell lines confirming specific brentuximab vedotin cytotoxicity. Furthermore, brentuximab vedotin decreased proliferation of PEL cells at 48 hours leading to a complete proliferation arrest at 72 hours, as measured by MTS assay. These effects were absent after equivalent doses of control IgG conjugated drug treatment. Supportive to this, labeling of cells with PI to detect active DNA content by flow cytometry showed that bretuximab vedotin induced growth arrest in G2/M phase. To further establish the anti-tumor potential of brentuximab vedotin in vivo, we used the direct xenograft UM-PEL 1 model, established in our laboratory (Sarosiek, PNAS 2010), which mimics human PEL tumors. UM-PEL 1 bearing mice were injected intraperitoneally 3 times a week with brentuximab vedotin or control IgG conjugated MMAE for 4 weeks. Brentuximab vedotin treatment markedly prolonged overall survival of UM-PEL-1 bearing mice compared to controls (p Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2368-2368
Author(s):  
Luise A de Albuquerque Simoes ◽  
Isabel Weinhäuser ◽  
Diego A Pereira-Martins ◽  
César Alexander Ortiz Rojas ◽  
Thiago Mantello Bianco ◽  
...  

Abstract Accumulating evidence suggest that the axon guidance molecules SLIT and ROBO are not only implicated in physiological process but also in cancer progression. Depending on the type of cancer the SLIT-ROBO axis can either act as a tumor suppressor gene, in which case the SLIT2 promoter site is frequently hypermethylated or as an oncogene, whereby high expression is often associated with poor prognosis. In the context of acute myeloid leukemia (AML), low expression of SLIT2 has been associated with low overall survival (OS) (Golos et al., 2019), while the functional role of SLIT2 remains largely unknown. Recently, we showed that the knockdown of SLIT2 increased cell proliferation of acute promyelocytic leukemia (APL) cells resulting in a more aggressive course of disease progression in vivo using the murine transgenic APL model (Weinhäuser et al., 2020). Here, we aimed to study the functional role of SLIT2 in a more heterogeneous disease, such as AML. Using different publicly available datasets. (GSE58477, normal karyotype blasts: 62, healthy CD34 +: 10; GSE63409, LSC: 14, HSC: 5) we detected increased methylation at the SLIT2 promoter site of AML leukemic cells compared to healthy CD34 + cells suggesting SLIT2 tumor suppressive functions. In addition, we measured decreased levels of SLIT2 in the bone marrow (BM) plasma of AML patients compared to healthy donors. To assess the biological role of SLIT2, we treated AML cell lines (KASUMI1, MV411, and MOLM13) with recombinant SLIT2 (50 ng/mL) in vitro. Administration of SLIT2 reduced AML cell growth, colony formation and induced cell cycle arrest in the G1 phase for all AML cell lines. Conversely, the knockdown of SLIT2 promoted increased THP-1 and OCI-AML3 cell proliferation. Next, we determined whether the treatment with SLIT2 could delay leukemogenesis in vivo using the AML cell line MV4-11. Engraftment was monitored by luciferase bioluminescent signal and NSGS mice were either treated with recombinant SLIT2 using a dose of 25 ng/g of body weight or vehicle (control group). SLIT2 therapy resulted in a lower disease burden, decreased leukemic infiltration in the BM and spleen, reduced spleen size, and increased OS compared to the control group (p<0.05). In conclusion, we showed that SLIT2 methylation is recurrent in AML patients and that the level of SLIT2 in the plasma of AML patients is reduced. Moreover, SLIT2 treatment appears to have a cytostatic effect on different AML cell lines delaying leukemogenesis in vivo. Overall, our study reveals the therapeutic potential of SLIT2 in hematological malignancies, which could be used as an adjuvant in the clinic. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5186-5186
Author(s):  
Yang Lu ◽  
Dan Wang ◽  
Yifang Yuan ◽  
Li mei Chen ◽  
Yi ke Huang ◽  
...  

Abstract Introduction DNA methyltransferase (DNMT) family play an important role in the development and growth of lives, encoding enzymes that catalyze the addition of a methyl group to the cytosine residue of CpG islands. With the increase in methylation, the downstream genes are often associated with reduced expression. In this family, DNMT3a occupies the essential position to implement the de novo methylation. Timothy J. Ley and many other scientists found that in M4 and M5 acute myeloid leukemia (AML), around 20% patients suffered from DNMT3a mutation (most are R882H mutation), always associating with adverse prognosis. But what's the reason for adverse prognosis? Additionally, our formal Meta analysis showed that the de novo AML patients with DNMT3a mutation have higher platelet counts, WBC and RBC counts. To shed some light on the possible causal relation between the increasing in platelet count and poor prognosis led by DNMT3a mutation, we transduced the MK cell lines with genes null-mCherry (null), DNMT3a wild type-mCherry (DNMT3aWT) and DNMT3a R882H mutation type-mCherry (DNMT3aMT) respectively, trying to figure out the possible role that the mutation plays in the megakaryopoiesis and thrombopoiesis. Also, we tested several drugs that may target the mutation. Methods The SFFV-null-IRES-mCherry, SFFV-DNMT3aWT-IRES-mCherry and SFFV-DNMT3aMT-IRES-mCherry plasmids were constructed by Dr. Qianli Jiang, modified from LEGO-iC plasmids. MK cell lines (chrf-288-11, meg-01) were flow-through transduced with the lentivirus produced by packaging plasmids and those above. All the fluorescence positive cells have been doubly sorted by flow cytometry. Cell ploidy was analyzed by flow cytometry using Propidium Iodide (PI); colony forming unit (CFU-MK) were enumerated 14d after being plated with TPO and IL-3; cell proliferation were tested by CCK-8; apoptosis was measured via flow cytometry with PI and Annexin V-FITC; CD41a and CD61 were tested with flow cytometry. The drug tests including Decitabine, Dasatinib and Rituximab were analyzed using CCK-8 test and cytomorphologic tests. Results With CCK8 test of chrf-288-11 and meg-01, DNMT3aMT proliferates faster than the null and DNMT3aWT (P<0.05, Fig.1). In CFU-MK, both cells lines showed that DNMT3a mutation promoted the colony formation (P<0.05). The CD41a percentage decreased from null to DNMT3aWT and DNMT3aMT (P<0.05) while the CD61percentage increased from null to DNMT3aWT and DNMT3aMT (P<0.05). Also, with morphologic analyses, DNMT3aMT in both cell lines maintain more mature stages. Cell ploidy test also demonstrated that cell lines with DNMT3a mutation contain more multiploids (P<0.05). Apoptosis test illustrated that DNMT3a mutation protect the cell lines from apoptosis (P<0.05). In the drug experiments, 1uM Decitabine could slow down the proliferation of 3 gene types of chrf-288-11 significantly (P<0.05). Dasatinib also posed a negative effect on the proliferation of 3 gene types of chrf-288-11 (P<0.05, Fig.2). In Rituximab experiment, we could find that interestingly, certain concentrations could speed up the proliferation of 3 gene types of chrf-288-11, while others not (P<0.05, Fig.3). Conclusion With all the above evidences, we can safely conclude that the megakaryocyte cell lines with DNMT3a mutation are associated with high-differentiation, high-colony formation and low-apoptosis, which could help us to understand the elevation of platelet count in AML patients with DNMT3a mutation. The anti-apoptosis and renewal ability of the cell lines with DNMT3a mutation may lead to a bad prognosis of these AML patients (with DNMT3a mutation). What's more, according to the drug experiment, we found in the both cell lines, DNMT3aWT and DNMT3aMT cells died significantly at even low concentration of decitabine. Dasatinib also slowed down the proliferation of 3 gene types of chrf-288-11, whether Dasatinib could lead to further treatment of such leukemia with DNMT3A mutation needs more research. Rituximab is helpful in the treatment against refractory thrombocytopenia. However, the mechanism hasn't been clarified. Interestingly, our results showed that, Rituximab may have a direct effect on MKs, giving a boost to the megakaryopoiesis and thrombopoiesis with certain concentration. Figure 1 Figure 1. Figure 2 Figure 2. Figure 3 Figure 3. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1515-1515 ◽  
Author(s):  
Enrique M. Ocio ◽  
Patricia Maiso ◽  
Mercedes Garayoa ◽  
Marc Dupuis ◽  
Atanasio Pandiella ◽  
...  

Abstract Background & Aims Fas receptor is expressed on the surface of many malignant cells and its activation represents a potentially relevant anticancer target. APO010 is a recombinant form of Fas Ligand with hexameric structure, which is currently being evaluated in Phase 1 clinical trials. In order to identify possible targeted indications, we tested the in vitro and in vivo anti-tumor efficacy of APO010 on multiple myeloma (MM) cells. Material & methods In vitro cytotoxicity was tested by MTT and Annexin V staining in 8 MM cell lines and PBMCs from 3 healthy donors. Other techniques used for mechanistic studies were propidium iodide uptake by flow cytometry, Western-blotting, BrdU uptake and gene expression profile analysis. The in vivo antimyeloma effect of APO010 was tested in a xenograft of human plasmocytoma in CB17-SCID mice. When tumors became palpable mice were randomized to receive APO010 15 μg/Kg ip × 5d/sem (n=7), APO010 5 μg/Kg ip × 5d/sem (n=8) or vehicle alone (n=8). Tumor volumes, clinical features and weight were monitored three times a week. Results Six of the 8 MM cell lines studied by MTT were highly sensitive to APO010 with IC-50 at 24h of 0.5–20 ng/ml (2.5–100 pM), whereas two were resistant (RPMI-8226 and OPM-1). This sensitivity was correlated with the expression of Fas receptor by flow cytometry. Activation of apoptosis was rapid (within two hours of incubation) with maximum effect at 10 hours, as determined by Annexin V staining. Interestingly, APO010 was not toxic against PBMCs (both resting and activated) from 3 healthy donors at doses effective against MM cell lines. The presence of the microenvironment, as simulated by the coculture of MM1S cells with IL-6, IGF-1 and BMSCs, was not able to abrogate the APO010 antimyeloma effect. The combination of APO010 with Doxorubicin and Bortezomib, and, to a less extent, with Melphalan and Lenalidomide, potentiated the efficacy of the drugs alone. Regarding the mechanism of action, APO010 antiproliferative activity is mediated through caspase dependent apoptosis (Annexin-V staining, and PARP, caspase-3, caspase-7, caspase-8 and caspase-9 cleavage) and is independent of variations on the cell cycle profile. In this sense, the presence of the pan-caspase or caspase-8 inhibitors (Z-VAD-FMK and Z-IETD-FMK respectively) were able to completely abrogate APO010-induced cell death. Treatment of MM1S cells with APO010 for just one hour induced changes in the expression of 52 genes, many of them implicated in regulation of transduction (n=16). Three of the 4 most upregulated genes were the 3 members of the nuclear receptor subfamily 4, group A (Nurr1, Nor1 and Nur77). Other upregulated transcription factors were members of the Fos/Jun family such as Jun, JunB or FosL2. Western-Blot studies revealed that APO010 also provoked cleavage of MCL-1 and BIM, a decrease of BID and an important downregulation of pAKT. In the in vivo studies, APO010 treatment inhibited tumor growth as compared with the control group (p=0.02) without differences among the two doses of APO010. No significant toxicity was observed regarding body weight loss or increase in liver enzymes. Conclusions These data show that Fas activation with APO010 induces in vitro and in vivo cytotoxicity in MM cell lines, mainly through transcriptional regulation. This study provides an initial rationale for the use of this compound for treatment of MM patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4073-4073
Author(s):  
Varda Deutsch ◽  
Yona Farnoushi ◽  
Michal Cipok ◽  
Sigi Kay ◽  
Elizabeth Naparstek ◽  
...  

Abstract Abstract 4073 While new treatment options are available, multiple myeloma (MM) still remains an incurable malignancy of plasma cells with a grim prognosis. Practical in vivo models to study human MM may enable a better understanding of the biology of the disease, and better optimization of therapeutic strategies. The best current xenograft model, the immune-deficient NOD/SCID mice, recapitulates MM in vivo, however, the price is very costly and maintenance complex, with >1 month required to establish engraftment. Our goal was to develop a user friendly rapid alternative xenograft system for the preclinical assessment of MM growth and therapy. We recently described this new in-vivo system for studying human leukemia in the pre-immune turkey embryo 1,2. These embryos are inexpensive, require no maintenance, and are easily manipulated experimentally. Described here are the first attempts at application of this novel system to study MM and test therapies. Cell lines ARH-77 and CAG line and fresh patient cells (5 × 106/embryo) were injected IV into turkey egg chorioallantoic membrane veins on embryonic day E11. Engraftment of human cells in hematopoietic organs, bone marrow (BM) and liver was detected 7 days later (E18) by RTPCR, immunohistochemistry and flow cytometry and by circulating free light chain (6-25 mg/L) in the peripheral blood of 100% of the injected cell lines and 50% of patients myelomas. Treatment with Velcade (Bortezomib) or Revlimid IV on E13 (48 hours after MM cell injection), at drug levels that were precalibrated to be non-toxic to the developing embryonic BM, dramatically reduced engraftment, demonstrating the utility of this new model for testing drug activity in vivo. ARH-77 cells, detected by flow cytometry of the embryonic BM cells with anti-human CD19, CD38 and CD138, were inhibited from 8.5% engraftment to 0.72% after a single Velcade treatment, with an 18 fold decrease compared to untreated embryos in the ratio of human to avian cells in BM tissue. determined by Q-RT-PCR analysis of human alpha satellite and avian GAPDH DNA normalized per cell. Very similar results were obtained with Revlimid. The results presented suggest that with further work the turkey embryo model may provide an affordable, rapid and practical xenograft system in vivo for studying the biology of MM, for affordably testing MM therapies, as well for developing a new method for individualized patient screening for response or resistance to particular therapeutic agents. 1. Taizi M, Deutsch VR, Leitner A, Ohana A, Goldstein RS. A novel and rapid in vivo system for testing therapeutics on human leukemias. Exp Hematol. 2006;34:1698-1708. 2. Grinberg I, Reis A, Ohana A, et al. Engraftment of human blood malignancies to the turkey embryo: a robust new in vivo model. Leuk Res. 2009;33:1417-1426. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3019-3019
Author(s):  
Lavinia Biamonte ◽  
Cinzia Federico ◽  
Eugenio Morelli ◽  
Emanuela Leone ◽  
Maria Eugenia Gallo Cantafio ◽  
...  

Abstract MicroRNAs (miRNAs), short non-coding RNAs which tune gene expression at post-transcriptional level, are recently emerging as key players in pathogenesis, progression and drug-resistance of multiple myeloma (MM). In this disease, they can act either with tumor-promoting or tumor-suppressing functions, depending on the nature of target mRNAs. Nowadays, effective strategies are available both to replace or to inhibit the expression of deregulated miRNAs, thus prompting the design of miRNA-based therapeutic strategies. We have recently demonstrated that miR-125b has tumor suppressor activity in MM and that enforced expression of synthetic miR-125b-5p mimics induces significant anti-MM activity in vitro and in vivo by targeting cell addiction to IRF4/cMyc pro-survival signaling. Moreover, we uncovered a functional feedback loop between cMyc and miR-125b in MM cells, whereas cMyc directly suppresses miR-125b transcription which, in turn, negatively regulates cMyc expression by targeting IRF4 mRNA. In the present study, we investigated the therapeutic potential of synthetic miR-125b-5p mimics combined with cMyc targeting agents, including the 10058-F4 small molecule inhibitor of cMyc-Max heterodimerization and the BET-bromodomain inhibitor JQ1, which is reported to inhibit cMyc transcription. At this aim, 3 MM cell lines (NCI-H929, SK-MM-1 and RPMI-8226) transfected with either miR-125b-5p mimics or scrambled oligonucleotides (miR-NC) were exposed to 10058-F4 (ranging from 10 to 100 μM) or JQ1 (ranging from 0,1 to 2μM) or DMSO. Effects on cell proliferation were then evaluated by CCK-8 assay at 24h, 48h and 72h time points, while the occurrence of apoptotic cell death was assessed by Annexin V flow-cytometry assay. Importantly, we found that enforced expression of miR-125b-5p mimics significantly and synergistically (synergistic index, SI >1) increases growth-inhibitory and pro-apoptotic activities of both 10058-F4 and JQ1. Similar results were observed in SK-MM-1 cells co-transfected with miR-125b-5p and cMyc siRNAs, while cMyc-defective U266 cells were not sensitized to either 10058-F4 nor JQ1 upon transfection with miR-125b-5p mimics. Furthermore, combinatorial treatments with JQ1 and miR-125b-5p mimics resulted in a stronger downregulation of cMyc protein, as compared to single molecules alone. Indeed, these results confirmed that impairment of cMyc activity/expression mediates the anti-MM synergistic effects between 10058-F4 or JQ1 and overexpression of miR-125b-5p by synthetic mimics. In conclusion, our data demonstrate a cMyc-mediated synergistic anti-MM activity of synthetic miR-125b-5p mimics with 10058-F4 or JQ1 cMyc targeting agents, providing the rationale for a more advanced preclinical investigations for the design of early clinical trials. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1594-1594
Author(s):  
Rong Fan ◽  
Hatice Satilmis ◽  
Niels Vandewalle ◽  
Elke De Bruyne ◽  
Eline Menu ◽  
...  

Abstract Introduction Immunotherapy has revolutionized cancer treatment and significantly affected the management of Multiple Myeloma (MM) patients. Unfortunately, these immunotherapeutic approaches are hampered by the presence of a suppressive bone marrow microenvironment including myeloid derived suppressor cells and tumor associated macrophages. Tasquinimod (TasQ), an immunomodulatory compound, is currently in phase Ib/IIa for relapsed/refractory MM patients (NCT04405167). TasQ blocks the interaction between S100A9 and its receptors, which is associated with reduced MDSC accumulation. In this study, we investigated TasQ-mediated direct and indirect effects on MM cell growth, bone disease and immunomodulation in vitro and in vivo using human myeloma cell lines and the immunocompetent 5TMM models. Material and methods In vitro, murine (5T33vt, 5TGM1) and human (JJN3, LP1, OPM2, and RPMI8226) MM cell lines were cultured at different concentrations of TasQ. Cell proliferation was assessed by BrdU staining using flow cytometry. C-Myc and pSTAT3 expression were analyzed by western blot. In vitro T cell proliferation experiments were performed using MACS-sorted CD11b + cells and CFSE-labeled T cells from naïve mice. Cells were cocultured for 72h in the presence of MM conditioned medium (5T33MMvt CM) with CD3/CD28 microbeads, followed by flow cytometry to assess T cell proliferation. For in vivo experiments, we used the 5T33 (aggressive) and 5TGM1 (moderate) MM models. On the second day after tumor cell injection, the mice were randomly assigned to the treatment group and the control group. The treatment group received 30 mg/kg of TasQ in drinking water for 35 days (5TGM1) and 21 days (5T33). Anti-tumor and immunomodulating effects were analyzed by flow cytometry (e.g. tumor cells, myeloid subsets, CD4/CD8 + T cells), qRT-PCR, western blot and serum ELISA (interferon-gamma). Effects on osteogenesis in the 5TGM1 model was investigated by Micro-CT. Statistical differences were assessed by Mann-Whitney U test and One-way ANOVA with p&lt;0.05 considered as statistically significant. Results TasQ-treatment of murine and human myeloma cell lines (HMCL), at concentrations of 10-25uM, significantly reduced MM cell proliferation after 24h and 48h in vitro (n=3, p&lt;0.05). In addition, a downregulation in c-Myc expression could be observed 6h after treatment of human MM cell lines (n=3). In vitro, TasQ significantly increased T cell proliferation in co-culture experiments with T cells and myeloid cells in 5T33MMvt CM (n=3, p&lt;0.05). Using the immunocompetent 5TGM1 and 5T33MM model, we investigated direct and indirect anti-tumor effects of TasQ. We found that TasQ significantly reduced tumor load in the bone marrow of 5TGM1 (n=10/group, p=0.0012) and 5T33MM mice (n=10/group, p=0.0106) compared to vehicle-treated control mice. Using flow cytometry, we could not observe a difference in the percentage of CD4 + and CD8 + T cells. However, a significant upregulation in serum interferon-gamma could be observed in the 5T33MM mice (p=0.0284). While the percentage of CD11b + cells in the TasQ-treated group was significantly increased (p&lt;0.05), the percentage of monocytic myeloid cells (CD11b +Ly6G -) was significantly reduced in both models (p&lt;0.05). qRT-PCR results showed that the expression of IL-10 was downregulated in purified CD11b + myeloid cells (p&lt;0.05). Consistent with the in vitro data, we observed a decrease in the protein expression of c-Myc in purified MM cells obtained from TasQ-treated mice compared to control mice. Micro-CT analysis of femurs demonstrated a significant increase in the percentage BV/TV (ratio of bone material volume over tissue volume) and trabeculae number (p&lt;0.0001) in TasQ-treated 5TGM1 mice compared to untreated mice. Conclusion TasQ has pleiotropic effects on the MM cells and its surrounding bone marrow microenvironment. It affects MM cell growth by decreasing c-Myc expression. In addition, TasQ targets the immunosuppressive monocytic myeloid cell population and increases serum interferon-gamma levels, indicative for immune cell activation. Moreover, it stimulates osteogenesis in vivo. Taken together, all these data provide evidence for the therapeutic benefits of TasQ as an anti-MM therapy for patients. Disclosures Törngren: Active Biotech: Current Employment. Eriksson: Active Biotech: Current Employment. De Veirman: Active Biotech AB: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3598-3598
Author(s):  
Swarna Bais ◽  
Elizabeth Wise ◽  
Eric M. Harris ◽  
Amy Meacham ◽  
Christopher R Cogle

Abstract Abstract 3598 Background: Vascular endothelial growth factor (VEGF) and its cognate receptors (VEGFRs) are known to serve important roles in normal hematopoiesis, but the importance of the VEGF/VEGFR axis in malignant hematopoiesis, namely acute myeloid leukemia (AML), is poorly defined. Methods: Bone marrow from AML patients were analyzed for VEGFRs on the malignant myeloblast populations. Human myeloid leukemia cell lines, KG-1, HL60 and K562, were also evaluated for VEGFR expression. Knockdown of VEGFR1 and VEGFR2 receptors in AML cells expressing these receptors were performed using lentivirus transfection of shRNA. Cell proliferation was quantified using XTT colorimetric assay and apoptosis was evaluated by Annexin V and PI staining. Results: Bone marrow from 12 consecutive AML patients showed that 33% of patients had malignant myeloblasts that expressed VEGFR1. Of the AML cell lines tested, only KG-1 cells expressed VEGFR1 and VEGFR2. Knockdown of VEGFR1 and VEGFR2 in KG-1 cells were confirmed by Western blot. When VEGFR1 was knocked down in KG-1 leukemia cells, cell proliferation was significant decreased (Figure 1). In addition, knocking down VEGFR1 resulted in enhanced sensitivity to cytarabine chemotherapy (Figure 1). In contrast, knockdown of VEGFR2 did not result in changes in leukemia cell proliferation or sensitivity to cytarabine chemotherapy (Figure 2). When KG-1 leukemia cells knocked down for VEGFR1 expression were transplanted into sublethally, irradiated NOD/scid/IL2R□−/− (NSG) mice (n=10), none of the mice showed engraftment of VEFR1 deficient cells. Conclusions: The VEGF/VEGFR axis is an important determinant in AML pathobiology. In specific, AML cells depend upon VEGFR1 and this receptor represents a promising target for future therapeutic intervention. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document