scholarly journals TBK1/Ikkε Inhibitor Amlx Blocks Multiple Myeloma Cell Growth in Vitro and In Vivo

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4504-4504
Author(s):  
Quanhong Sun ◽  
Peng Zhang ◽  
Juraj Adamik ◽  
Konstantinos Lontos ◽  
Valentina Marchica ◽  
...  

Abstract Multiple myeloma (MM) is the most frequent cancer to involve the skeleton and remains incurable for most patients, thus novel therapies are needed. MM bone disease is characterized by osteolytic lesions that contribute significantly to patient morbidity and mortality. We showed that TBK1 signaling is a novel pathway that increases osteoclast (OCL) formation in Paget's disease, an inflammatory bone disease. Therefore, we hypothesized that TBK1 plays a similar role in MM induction of OCL. We found that MM conditioned media (MM-CM) dose-dependently increased bone marrow monocyte (BMM) expression of activated TBK1 protein and enhanced RANKL-driven OCL formation. TBK1 knockdown by shRNA transduction into BMM significantly attenuated the ability of MM-CM to increase OCL differentiation without altering OCL differentiation in control media. We found that the TBK1/IKKε inhibitor Amlexanox (Amlx) blocked normal and MM-enhanced OCL formation. Importantly, TBK1 mRNA expression in CD138+ plasma cells (PC) isolated from MM or PC leukemia patients is significantly higher as compared to PC from Monoclonal Gammopathy of Undetermined Significance (MGUS) patients. Therefore, we tested whether targeting the TBK1/ IKKε signaling pathways would also affect MM cells. We found that Amlx strongly decreased the viability of several MM cell lines and primary MM cells via induction of apoptosis. Amlx treatment of MM cell lines also induced a G1/S blockade, decreased activated ERK1/2, and increased translation of the dominant-negative C/EBPb-LIP isoform in several MM cell lines. The positive-acting C/EBPb-LAP isoform was previously shown to be a critical transcription factor for MM viability. Importantly, Amlx also enhanced the effectiveness of the proteasome inhibitors bortezomib and carfilzomib to kill MM cells in culture. Further, Amlx sensitized MM1.S cells to the induction of apoptosis by the autophagic inhibitor Bafilomycin A. Amlx dose-dependently inhibited tumor growth in a syngeneic MM mouse model in which 5TGM1 MM cells expressing secreted GLuc were injected subcutaneously into immunocompetent C57Bl/KaLwRij. Tumor growth was assessed by measuring tumor volumes and by the levels of secreted GLuc in the blood. Further, OCL formation ex vivo from bone marrow monocytes obtained from AMLX-treated mice versus controls was decreased. Amlx did not affect the viability of primary BMM, bone marrow stromal cells (BMSC), or splenocytes. Further, Amlx treatment of primary BMSC from MM patients or normal donors decreased expression of TNFα, IL-6 and RANKL, thereby decreasing BMSC support of MM survival and OCL differentiation. Amlx pretreatment of BMSC and murine pre-osteoblast MC4 cells also decreased VCAM1 expression and reduced MM cell adhesion, another mechanism for Amlx reduction of bone microenvironmental MM support. These data suggest that targeting TBK1/IKKε signaling may decrease MM bone disease by slowing MM growth, directly and indirectly, and preventing MM-induced osteolysis. Disclosures Giuliani: Janssen Pharmaceutica: Other: Avisory Board, Research Funding; Celgene Italy: Other: Avisory Board, Research Funding; Takeda Pharmaceutical Co: Research Funding. Roodman:Amgen Denosumab: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4988-4988
Author(s):  
Inger S. Nijhof ◽  
Jeroen Lammerts van Bueren ◽  
Berris van Kessel ◽  
Michel de Weers ◽  
Joost M Bakker ◽  
...  

Abstract Abstract 4988 To date, multiple myeloma (MM) remains an incurable malignancy of antibody-producing clonal plasma cells. The introduction of a new generation of immunomodulatory agents, such as lenalidomide (LEN), and the potent proteasome inhibitor bortezomib (BORT), used alone or in combination with steroids (dexamethasone; DEX or prednisone; PRED) has significantly improved the overall survival of MM patients. Nonetheless, all chemotherapy strategies are eventually hampered by the development of drug-resistance. Towards a novel and effective targeted immunotherapy for MM, we have developed daratumumab (DARA), a CD38 human antibody with broad-spectrum killing activity. In vitro, DARA induces substantial anti-MM effects mainly via ADCC (antibody dependent cellular cytotoxicity) and CDC (complement dependent cytotoxicity). In ex vivo assays, which allowed us to address killing of MM cells in bone marrow aspirates isolated from MM patients, enhanced or even synergistic MM cell killing was observed when DARA was combined with LEN, or with cocktails of LEN/BORT/DEX and melphalan/BORT/DEX. We now extended these ex vivo analyses to evaluate whether DARA in combination with LEN, BORT and DEX could improve the lysis of MM cells in bone marrow aspirates derived from 22 patients of whom 9 became refractory for LEN and 6 for LEN and BORT. DARA significantly enhanced the lysis of MM cells when combined with LEN or BORT in virtually all patients, including the LEN- and LEN/BORT-refractory patients. The combination of DARA+BORT and DARA+DEX induced additive killing, suggestive of lysis by independent mechanisms. When combined with LEN, DARA improved the lysis of MM cells in a synergistic manner in both non-refractory and LEN-refractory patients. This is suggestive of killing by at least partly complementary mechanisms. Synergistic activity of LEN and DARA was attributable to LEN-induced activation of effector cells that were involved in DARA-mediated ADCC. In addition, enhanced/synergistic direct killing of MM cells was observed. Experiments are under way to further investigate the mechanism underlying synergistic activity of DARA and LEN. In conclusion, our results provide a rationale for clinical evaluation of DARA in combination with LEN, BORT and DEX including in patients refractory to these drugs. Disclosures: van Bueren: genmab: Employment. de Weers:genmab: Employment. Bakker:genmab: Employment. Parren:genmab: Employment. Lokhorst:genmab: Consultancy, Research Funding. Mutis:genmab: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1924-1924 ◽  
Author(s):  
Vikas A. Gupta ◽  
Shannon M. Matulis ◽  
Jason E. Conage-Pough ◽  
Ajay K. Nooka ◽  
Jonathan L. Kaufman ◽  
...  

Abstract While direct inhibition of Bcl-2 and/or Bcl-xL is an exciting new approach in the treatment of hematologic malignancies, current agents in clinical testing including navitoclax (ABT-263) and ABT-199 are not predicted to be efficacious in most cases of multiple myeloma. Navitoclax and the related molecule ABT-737 promote apoptosis by releasing the pro-apoptotic BH3 only protein Bim from Bcl-2 and Bcl-xL, but are incapable of disrupting the interaction between Bim and Mcl-1, the predominant anti-apoptotic protein in both normal and malignant plasma cells. However, despite their dependence on Mcl-1, some human myeloma cell lines (HMCL) as well as freshly isolated patient-derived myeloma cells are sensitive to ABT-737 in vitro. Knowing that myeloma normally requires the bone marrow niche for survival, we hypothesized that a stromal derived factor might mediate the resistance to ABT-737 in vivo and identified IL-6 as a key resistance factor. In our initial experiments, the HS-5 stromal cell line induced resistance to ABT-737 in the HMCL MM.1s, as did conditioned media from both HS-5 cells and patient derived bone marrow stromal cells. Blocking IL-6 with an IL-6 neutralizing antibody reversed the protective effect of conditioned media, while addition of 10 ng/ml IL-6 protected cells to the same degree as conditioned media. In order to understand the mechanisms of IL-6 mediated resistance to ABT-737, we have focused on the effect of IL-6 on the Bcl-2 family of proteins. In previous work from our lab, the ABT-737 sensitive HMCLs KMS18, MM.1s, and 8226 all showed increased binding of Bim to Bcl-2 and Bcl-xL compared to ABT-737 resistant lines. We therefore examined the effect of IL-6 on the distribution of Bim among Bcl-2, Bcl-xL, and Mcl-1. In KMS18, stimulation with 10 ng/ml IL-6 for 24 hours increases binding of Bim to Mcl-1. The increased binding correlates with a 2 fold increased Mcl-1 expression at both the RNA and protein level. The increased Mcl-1 expression in response to IL-6 may be limited to KMS18 as it was not observed in MM.1s, 8226, or KMS11. IL-6 also does not prevent ABT-737 from disrupting the interaction between Bim and Bcl-xL. We also examined Bim for IL-6 induced post-translational modifications that could alter its binding to Bcl-2 proteins. Bim is known to be phosphorylated on serine 69 by Erk in response to growth factor stimulation. We observed Bim serine 69 phosphorylation within 5 minutes of IL-6 stimulation in both KMS18 and MM.1s cells. Phosphorylation was reversible with 10 μM of the MEK inhibitor U0126. Although serine 69 phosphorylation has been reported to result in Bim degradation, we do not observe any change in Bim levels over the course of 24 hours. Interestingly, the MEK inhibitor sensitized both KMS18 and MM.1s to ABT-737 and was able to partially overcome IL-6 induced resistance. Inhibition of Akt with the PI3K inhibitor LY294002 had no effect on Bim serine 69 phosphorylation or IL-6 induced resistance. Of note, the MEK inhibitor failed to prevent upregulation of Mcl-1 in KMS18, suggesting an alternative pathway mediates this effect. We are currently studying the role of JAK signaling in Mcl-1 expression with the inhibitors AZD1480 and ruxolitinib, and are also extending our results to additional cell lines and patient samples. These results suggest that targeting IL-6 or its downstream pathways may sensitize myeloma to Bcl-2 antagonists such as ABT-199 and navitoclax. Disclosures: Kaufman: Onyx: Consultancy; Novartis: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Millennium Pharmaceuticals: Consultancy; Jansenn: Consultancy; Merck: Research Funding. Lonial:Millennium: Consultancy; Celgene: Consultancy; Novartis: Consultancy; BMS: Consultancy; Sanofi: Consultancy; Onyx: Consultancy. Boise:Onyx Pharmaceuticals: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1987-1987
Author(s):  
Amanda Jeske ◽  
Feda Azab ◽  
Pilar De La Puente ◽  
Barbara Muz ◽  
Justin King ◽  
...  

Abstract Background: Multiple Myeloma (MM) is the second most common hematological malignancy, and continues to be a fatal disease even with the development of novel therapies. Despite promising preclinical data in standard tissue culture models, most drugs fail in clinical trials and show lower efficacy in patients. This highlights the discrepancy between the current in vitro models, the pathophysiology of the disease in the patients, and the urgent need for better in vitro models for drug development and improved prediction of efficacy in patients. We have previously developed a patient-derived 3D-Tissue Engineered Bone Marrow (3DTEBM) culture model, which showed superior properties for proliferation of primary MM cells ex vivo, and better recapitulated drug resistance. The long-term goal of this study is to use the 3DTEBM model as a tool to perform drug screens on BM aspirates of MM patients and prospectively predict the efficacy of different therapies in individual patients, and help treatment providers develop personalized treatment plans for each individual patient. In the current study, we used the 3DTEBM model to, retrospectively, predict clinical responses of MM patients to therapy, as a proof of concept. Methods: We used whole-BM, viably frozen tissue banked samples from 20 MM patients with clear clinical response patterns of complete remission, and either very good partial response (sensitive) or progressive disease (non-sensitive). The BM aspirates were used to develop a 3DTEBM that represents each individual patient. The patient-derived 3DTEBM cultures were treated ex vivo with the same therapeutic regimen that the patient received in the clinic for 3 days. The treatment ex vivo was based on combinations at different concentrations which mimic the steady state concentrations (Css) of each drug. The efficacy of the treatment ex vivo was evaluated by digestion of the 3DTEBM matrix, extraction of the cells, and analysis for prevalence of MM cells in the treatment groups compared to the non-treated controls. Patients were defined "sensitive" if the effect reached 50% killing in the range of 10xCss. The ex vivo sensitivity data was then correlated with the clinical response outcomes. Results: We found that the 3DTEBM was predictive in approximately 80% of the cases (in about 85% of the combination therapy cases, and in about 70% of the single therapy cases). Broken down by individual drug, it was predictive in 80% of the cases treated with Bortezomib, 78% Lenalidomide, 84% Dexamethasone, 100% Daratumumab, 50% Carfilzomib, 50% Pomalidomide, and 100% Doxorubicin. Conclusions: The 3DTEBM is a more pathophysiologically relevant model which predicts clinical efficacy of drugs in multiple myeloma patients, retrospectively. This data provides the bases for future studies which will examine the ability of the 3DTEBM model to predict treatment efficacy, prospectively, for development of personalized treatment plans in individual multiple myeloma patients. Disclosures Jeske: Cellatrix LLC: Employment. Azab:Cellatrix LLC: Employment. De La Puente:Cellatrix LLC: Other: Co-founder. Vij:Jazz Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Jansson: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Azab:Ach Oncology: Research Funding; Cellatrix LLC: Equity Ownership, Other: Founder and owner; Glycomimetics: Research Funding; Targeted Therapeutics LLC: Equity Ownership, Other: Founder and owner.


Leukemia ◽  
2016 ◽  
Vol 31 (8) ◽  
pp. 1743-1751 ◽  
Author(s):  
S Hipp ◽  
Y-T Tai ◽  
D Blanset ◽  
P Deegen ◽  
J Wahl ◽  
...  

Abstract B-cell maturation antigen (BCMA) is a highly plasma cell-selective protein that is expressed on malignant plasma cells of multiple myeloma (MM) patients and therefore is an ideal target for T-cell redirecting therapies. We developed a bispecific T-cell engager (BiTE) targeting BCMA and CD3ɛ (BI 836909) and studied its therapeutic impacts on MM. BI 836909 induced selective lysis of BCMA-positive MM cells, activation of T cells, release of cytokines and T-cell proliferation; whereas BCMA-negative cells were not affected. Activity of BI 836909 was not influenced by the presence of bone marrow stromal cells, soluble BCMA or a proliferation-inducing ligand (APRIL). In ex vivo assays, BI 836909 induced potent autologous MM cell lysis in both, newly diagnosed and relapsed/refractory patient samples. In mouse xenograft studies, BI 836909 induced tumor cell depletion in a subcutaneous NCI-H929 xenograft model and prolonged survival in an orthotopic L-363 xenograft model. In a cynomolgus monkey study, administration of BI 836909 led to depletion of BCMA-positive plasma cells in the bone marrow. Taken together, these results show that BI 836909 is a highly potent and efficacious approach to selectively deplete BCMA-positive MM cells and represents a novel immunotherapeutic for the treatment of MM.


2020 ◽  
Vol 21 (20) ◽  
pp. 7539
Author(s):  
Amro M. Soliman ◽  
Teoh Seong Lin ◽  
Pasuk Mahakkanukrauh ◽  
Srijit Das

Multiple myeloma (MM) is a cancerous bone disease characterized by malignant transformation of plasma cells in the bone marrow. MM is considered to be the second most common blood malignancy, with 20,000 new cases reported every year in the USA. Extensive research is currently enduring to validate diagnostic and therapeutic means to manage MM. microRNAs (miRNAs) were shown to be dysregulated in MM cases and to have a potential role in either progression or suppression of MM. Therefore, researchers investigated miRNAs levels in MM plasma cells and created tools to test their impact on tumor growth. In the present review, we discuss the most recently discovered miRNAs and their regulation in MM. Furthermore, we emphasized utilizing miRNAs as potential targets in the diagnosis, prognosis and treatment of MM, which can be useful for future clinical management.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1674-1674 ◽  
Author(s):  
Nicholas Burwick ◽  
Anne-Sophie Moreau ◽  
Xiaoying Jia ◽  
Xavier Leleu ◽  
Judith Runnels ◽  
...  

Abstract BACKGROUND: Multiple myeloma (MM) is a plasma cell malignancy that depends on interactions with the bone marrow (BM) microenvironment for growth and survival. In turn, adhesion of MM cells to the BM stroma provides a mechanism of resistance from standard chemotherapeutic agents. Recently, our lab has shown that by disrupting this adhesion using a selective CXCR4 inhibitor named AMD3100, MM cells are more sensitive to the proteasome inhibitor Bortezomib (Ghobrial lab, unpublished data). CXCR4 has been a particularly attractive target because its ligand SDF-1 is known to induce p42/44 MAPK, AKT, and the down-stream anti-apoptotic protein bad in MM cells, leading to increased MM growth and survival. Until recently, CXCR4 was thought to be a canonical receptor for the SDF-1 ligand. However, a second chemokine receptor for SDF-1 was subsequently discovered and named CXCR7. CXCR7 is a novel chemokine receptor that is important in cell adhesion, growth and survival in several tumor types. However, the role of CXCR7 in multiple myeloma (MM) has yet to be explored. Furthermore, the ability of SDF-1 ligand to regulate MM function via CXCR7 has not been studied. METHODS: The MM cell lines (U266, MM1.S, RPMI, OPM2, OPM1) were used. After informed consent was obtained, primary bone marrow samples from MM patients were collected. CD138 positive mononuclear cells were isolated by microbead selection. The expression of CXCR7 on MM cell lines and patient samples was confirmed using flow cytometry and RT-PCR analysis. For functional in vitro and ex-vivo assays, the CXCR7 selective antagonist 733 was used (ChemoCentryx Inc., Mountain View, CA). RESULTS: Here we show that CXCR7 was expressed on all tested MM cell lines and primary patient samples as demonstrated by flow cytometry and RT-PCR. Furthermore, CXCR7 was found to regulate SDF-1 induced MM cell adhesion, as demonstrated by in vitro assays using a small molecule compound specific for CXCR7 (733). The CXCR7 antagonist showed significant inhibition of adhesion of MM cell lines and patient samples to fibronectin, endothelial cells and stromal cells, with 50% reduction of adhesion at 5nM of the CXCR7 inhibitor, and with similar activity compared to 20uM of AMD3100 (CXCR4 inhibitor). However, unlike CXCR4, CXCR7 did not effect trans-well migration to SDF-1 chemokine. Interestingly, both receptors were found to be important for trans-endothelial migration of MM cells. Moreover, pre-treatment with 733 reduced homing of MM cells to the BM niche in vivo. Previous studies have failed to show signaling in response to CXCR7 in many tumor types. Here, we demonstrate that treatment with 733 inhibited SDF-1 induced pERK and pAKT, ribosomal pS6Kinase, pGSK3, pSTAT3, pFAK and pPAK signaling pathways, confirming a role for CXCR7 in facilitating SDF-1 signaling. This effect was further confirmed using immunofluorescence. To investigate whether CXCR7 and CXCR4 interact directly, we examined the effect of 733 and AMD3100 on CXCR4 expression and found that AMD3100 significantly inhibited CXCR4 expression, while 733 had no effect on CXCR4 expression, even in the presence of SDF-1. The CXCR7 inhibitor had no effect on the survival of MM cells using MTT and flow cytometry analysis, while high doses of 733 (1uM) had modest inhibition of proliferation. Interestingly, 733 prevented the growth advantage induced by 30nM SDF-1 at 24 hrs. CONCLUSION: Together, these results demonstrate the importance of CXCR7 in regulating MM adhesion and homing, and highlight the differential effects of CXCR4 and CXCR7 in regulating SDF-1 signaling in MM, thus providing a rationale for targeting the SDF-1/CXCR7 axis in MM.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3014-3014
Author(s):  
Giada Bianchi ◽  
Vijay G. Ramakrishnan ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
S. Vincent Rajkumar ◽  
...  

Abstract Abstract 3014 Background: Proteasome inhibitors have proven particularly effective in treatment of multiple myeloma, the second most frequent hematologic malignancy in the western world. Bortezomib, the first in class proteasome inhibitor in clinical use, was first approved in 2003 via fast FDA track, given the remarkable activity shown during phase II clinical trials. Nevertheless, more than 50% of multiple myeloma patients did not respond to single agent bortezomib when administered as second line agent. Moreover, bortezomib is only available for intravenous administration, representing a cumbersome therapy for patients, and its use is limited by significant toxicities (especially peripheral neuropathy). MLN9708 (Millennium Pharmaceuticals, Inc.), an investigational orally available, small molecule, is a potent, specific and reversible inhibitor of the 20S proteasome. It is currently under clinical investigation for the treatment of hematologic and non-hematologic malignancies. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form, and MLN2238 was used for all of the preclinical studies reported here. In vitro biochemistry studies have shown that MLN2238 has a faster dissociation rate from the proteasome compared to bortezomib, and in vivo studies of MLN2238 have shown antitumor activity in a broader range of tumor xenografts when compared to bortezomib. Given these encouraging preclinical results, we set to investigate the anti-myeloma activity of MLN2238 in vitro. Results: MLN2238 proved to have anti-proliferative and pro-apoptotic activity against a broad range of MM cell lines with EC50 at 24 hours ranging between 10 and 50 nM, even in relatively resistant MM cell lines (OPM2, DOX6, RPMI, etc.). In MM.1S cells, induction of apoptosis was time and dose dependent and related to activation of both caspase 8 and 9. When compared to MM.1S treated for 24 hours with EC50 dose of bortezomib, treatment with EC50 dose of MLN2238 resulted in the same extent of caspases cleavage occurring at an earlier time point (8-12 hours), possibly suggesting more rapid onset and/or irreversibility of apoptosis in cells treated with MLN2238. Treatment with MLN2238 was associated with early, but persistent induction of endoplasmic reticulum (ER) stress with BiP being induced 2–4 hours after treatment with EC50 dose and gradually increasing over time. While bortezomib has been associated with early induction and late decrease in proteins involved in ER stress, MLN2238 appears to induce a persistent rise in these factors, suggesting either more sustained proteasome blockade with stabilization of proteasome substrates or de-novo induction of unfolded protein response (UPR) genes. MLN2238 also proved effective in reducing phosphorylation of ERK1-2 with no overall alteration in the total ERK level, thus accounting for the observed reduction in proliferation upon treatment. Preliminary data indicate potential for additive and synergistic combination with widely used drugs, including doxorubicin and dexamethasone. Conclusion: While further clinical data are needed to establish the effectiveness of MLN2238 in the treatment of multiple myeloma, these preliminary nonclinical data, together with the favorable biochemical and pharmacokinetic properties, including oral bioavailability, make the investigational agent MLN9708 an appealing candidate for treatment of multiple myeloma. Further in vitro data could help establish whether a difference in the apoptotic mechanisms exist between MLN2238 and other proteasome inhibitors, primarily bortezomib, and could also help inform combination treatment approaches aimed at increasing effectiveness, overcoming bortezomib resistance and decreasing toxicity. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1831-1831 ◽  
Author(s):  
Michael Mangone ◽  
Luigi Scotto ◽  
Enrica Marchi ◽  
Owen A. O'Connor ◽  
Hearn J. Cho

Abstract Abstract 1831 Multiple myeloma (MM) is the second most common hematologic malignancy. Although there are effective new agents that can induce remission, relapse is inevitable and the disease is currently incurable. Progress in the treatment of this disease demands development of novel therapeutics and identification of functional biomarkers that may be used to distinguish tumors that are susceptible to specific targeted agents, creating a “personalized” therapeutic strategy for individual patients. We investigated these principles with anti-folates, which are not commonly used in MM but have demonstrated activity in this disease. Pralatrexate (PDX, 10-propargyl 10-deazaaminopterin) is a folate analogue that was rationally designed to have high affinity for Reduced Folate Carrier (RFC)-1, an oncofetal protein expressed in many cancers that actively transports folates into cells. PDX induced dose-dependent apoptotic cell death in a subset of human myeloma cell lines (HMCL) and CD138+ MM cells isolated from a clinical specimen. In sensitive cell lines, PDX exhibited 10-fold greater potency compared to the structurally related drug methotrexate (MTX). PDX induced dose-dependent, intrinsic apoptosis in sensitive HMCLs, characterized by cleavage of caspase-3 and -9 and accompanied by the loss of full-length Mcl-1, a Bcl-2 family protein that plays a critical role in drug-induced apoptosis in MM. Furthermore, the activity of PDX is not abrogated by the presence of exogenous interleukin-6 or by co-culture with HS-5 bone marrow stromal cells, both of which exert powerful survival effects on MM cells and can antagonize apoptosis in response to some cytotoxic chemotherapy drugs. Sensitivity to PDX-induced apoptosis correlated with higher relative levels of RFC-1 mRNA in sensitive compared to resistant HMCL. Resistant HMCL also exhibited a dose-dependent up-regulation of dihydrofolate reductase (DHFR) protein, a primary molecular target for anti-folates, in response to PDX exposure, whereas sensitive HMCL did not. These changes in functional folate metabolism biomarkers, high baseline RFC-1 expression and upregulation of DHFR in response to PDX, appeared to be mutually exclusive to sensitive or resistant HMCL, respectively. Importantly, PDX was also effective against sensitive HMCL in vivo in a novel mouse xenograft model. NOD/Shi-scid/IL-2Rγnull (NOG) mice were inoculated with MM.1s HMCL stably transduced to express both GFP and luciferase (GFP-luc). GFP-luc MM.1s cells engrafted into the long bones, pelvis, and vertebral column of NOG mice within 4–7 days after injection of cells, as assessed by in vivo bioluminescent imaging. Treatment with PDX resulted in a significant reduction in tumor burden after two doses. These results demonstrate that PDX has potent anti-myeloma activity in vitro and in vivo, and that RFC-1 expression and DHFR upregulation are robust functional biomarkers that may identify patients who are likely to benefit from PDX therapy. These data support further exploration of PDX therapy in clinical trials for MM and investigation of folate metabolism biomarkers as indices for treatment with this class of drugs. Improved anti-folates such as PDX are a promising class of agents that may be a valuable addition to the arsenal against MM. Disclosures: O'Connor: Celgene: Consultancy, Research Funding; Merck: Research Funding; Novartis: Research Funding; Spectrum: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2917-2917
Author(s):  
Jennifer Li ◽  
Andrew Leu ◽  
Mingjie Li ◽  
Ethan D Hobel ◽  
Kevin Delijani ◽  
...  

Abstract Abstract 2917 The inhibitory Fc receptor, Fc γRIIb, is expressed on plasma cells, controls their persistence in the bone marrow (BM) and their ability to produce serum Ig. Activation of Fc γRIIb leads to the phosphorylation of ITIM and recruitment of SH2-containing inositol 5'-phosphatase (SHIP) in plasma cells. Immunoreceptor tyrosine-based activation motif (ITAM) and ITIM provide the basis for two opposing signaling modules that duel for control of plasma cell activation. Fc γRIIb-mediated SHIP phosphorylation activates downstream ITAM or ITIM signaling. To determine whether multiple myeloma (MM) cells express Fc γRIIb, we performed immunohistochemical staining on bone marrow mononuclear cells from MM patients and controls. We found that not only CD20+ B cells expressed Fc γRIIb but more importantly CD138+ cells from MM patients also showed expression of this receptor. Next, we examined whether Fc γRIIb was present and expressed in CD138+ primary MM cells purified from fresh MM BM and the MM cell lines MM1s, RPMI8226, and U266 using PCR and RT-PCR on DNA and mRNA, respectively. We focused on the transmembrane domain of the Fc γRIIb gene with four primers from different parts of this domain since this portion plays a critical role in this receptor's function. The MM cell lines expressed different amounts of Fc γRIIb. Notably, we found that 17% (5/30) of MM patients showed absence of Fc γRIIb both using RT-PCR for mRNA and PCR for DNA. Moreover, use of these same primers on nonmalignant PBMCs from the MM patients also showed absence of this gene in the same five patients. As a result of these findings, we are currently sequencing Fc γRIIb in MM patients to determine if additional patients show mutational changes that affect the function of this receptor. We also further determined SHIP-1 phosphorylation using Western blot analysis since this protein mediates downstream signaling of Fc γRIIb. Following stimulation with Fc complexes, phosphorylation of SHIP-1 was markedly reduced in MM tumor cells compared to normal CD20+ B cells. Interestingly, the patients with missing Fc γRIIb expressed higher levels of SHIP-1 gene expression compared to patients with normal Fc γRIIb expression. We investigated the IgG-binding ability of MM patients (n=33) and normal donors (n=33) to Fc γRIIb. Each serum sample was incubated with cells from MHC1, a cell line that specifically expresses Fc γRIIb but not Fc γRI and Fc γRIIa. The results showed MM patients' serum IgG have much lower Fc γRIIb-binding ability than normal human IgG (P<0.05) by using both flow cytometric and immunofluorescence assays. Our findings suggest that the monoclonal protein produced by MM patients has a very low Fc γRIIb-binding ability and is incapable of signaling through the inhibitory ITIM pathway. Germline loss of Fc γRIIb in MM patients with variation in its expression level and its downstream signaling molecule SHIP and its phosphorylation as well as the inability of MM IgG to bind cells containing this receptor is a potential new mechanism that contributes to the uncontrolled growth of MM. Disclosures: Berenson: Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria, Research Funding, Speakers Bureau; Onyx Pharmaceuticals: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Medtronic: Consultancy, Honoraria, Research Funding, Speakers Bureau; Merck: Research Funding; Genentech: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 573-573
Author(s):  
Jessica Schmidt ◽  
Esteban Braggio ◽  
Marta Chesi ◽  
Jan Egan ◽  
Yuan Xiao Zhu ◽  
...  

Abstract Abstract 573 Using high throughput RNA interference screening on 6,722 druggable genes we previously identified XPO1/CRM1 as one of the 50 most vulnerable targets in Multiple Myeloma (MM)1. XPO1 knockdown proved lethal in MM cell lines, but had no effect on human embryonic kidney (293) cells or lung cancer (A549) cells, showing that XPO1 is a specific myeloma vulnerability, and that myeloma cell survival is dependent upon XPO1 expression. XPO1 encodes the protein exportin 1, a nuclear transport protein that exports tumor suppressor proteins from the nucleus, where they are active, to the cytoplasm, where they become inactive. We next analyzed XPO1 in MM via gene expression profiling (GEP). XPO1 expression is up-regulated as the disease progresses: patients with active MM have a higher level of XPO1 compared to normal plasma cells (p<0.04) and to patients with monoclonal gammopathy of undetermined significance or smoldering MM (p<0.0001). The highest levels were in human MM cell lines. TC classification revealed highest levels in t(11;14) and lowest levels in t(4;14) disease. Selective inhibitors of nuclear export (SINE) compounds have recently been developed that irreversibly inhibit XPO1/CRM1 and its nuclear export function. One such inhibitor, KPT-276, decreased the viability of all 12 MM cell lines tested in vitro, as shown by MTT assay. After 72 hours of drug treatment, a median IC50 value of approximately 175 nM (range 30–1000 nM) was observed. No synergy with other commonly used anti-MM therapeutics was observed in vitro. In contrast, the drug had little effect in 8 solid tumor cell lines with the exception of the B cell lymphoma line Ramos. KPT-276 was also consistently active in inducing apoptosis against MM primary patient samples. Using an IC80 dose of KPT-276, drug-treated samples had a reduced population of cells in S phase (8%) compared to cells treated with DMSO (21%). Using the vkappa*myc transgenic MM model, KPT-276 reduced monoclonal spikes (by a mean of 56%) in all mice treated orally with 150 mg/kg dose three times per week for 4 weeks. Furthermore, KPT-276 significantly reduced tumor growth in a xenograft MM1.S mouse model. GEP was performed in the presence or absence of drug in two different MM cell lines. Two genes of probable relevance, cell division cycle 25 homolog A (CDC25A) and Bromodomain-containing protein 4 (BRD4), were dysregulated by SINE treatment. Both are involved in cell cycle control and have been linked to MYC. RT-PCR and western blotting confirm that MYC, CDC25A and BRD4 are down-regulated, as soon as six hours, after treatment with KPT-276. KPT-276 has shown marked anticancer activities against B cell malignancies in vitro and is active and tolerated in Phase I canine studies. KPT-330, a close analog of KPT-276, is currently in Phase 1 studies in human with advanced hematological and solid tumors. Disclosures: Schmidt: Karyopharm: Research Funding. McCauley:Karyopharm Therapeutics Inc: Employment. Shacham:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics Inc: Employment. Stewart:Millenium: Consultancy, Honoraria, Research Funding; Onyx: Consultancy; Celgene: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document