scholarly journals Tumor Microenvironment Differs between Germinal Centre B-Cell and Non-Germinal Centre B-Cell like Diffuse Large B-Cell Lymphomas and Has Subtype-Specific Prognostic Impact on Survival

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5230-5230 ◽  
Author(s):  
Matias Autio ◽  
Suvi-Katri Leivonen ◽  
Marja-Liisa Karjalainen-Lindsberg ◽  
Teijo Pellinen ◽  
Sirpa Leppa

Introduction Based on the cell of origin, diffuse large B-cell lymphoma (DLBCL) is divided into germinal center B-cell (GCB) and activated B-cell (ABC) like subtypes, which differ in their gene expression profiles and clinical presentation with the ABC DLBCLs showing a worse outcome in response to R-CHOP immunochemotherapy. However, composition of the tumor microenvironment (TME) of these molecular subtypes has not been characterized. Methods We used Hans algorithm to determine the molecular subtypes (GCB vs non-GCB) and multiplexed immunohistochemistry (mIHC) to characterize tumor infiltrating T-cell phenotypes, including cytotoxic T-cells (CTLs; CD8, Granzyme B, OX40, Ki67), T regulatory cells (Tregs; CD3, CD4, FoxP3), Th1 effector cells (CD3, CD4, TBET) and T-cell immune checkpoint (CD3, CD4, CD8, PD1, TIM3, LAG3) in 165 primary DLBCLs. The findings were correlated with the expression of human leukocyte antigens (HLA) I and II (beta-2 microglobulin (B2M), HLA-ABC and HLA-DR), and outcome of the patients treated with R-CHOP-like immunochemotherapy. Results In the whole cohort, 82 (50%) cases were classified as GCB and 83 (50%) as non-GCB DLBCLs. In the GCB subtype, cytotoxic T-cells were more often PD1+, and T-cells FoxP3+than in the non-GCB subtype (Figure 1A-B). Furthermore, GCB DLBCLs tended to be more commonly HLA-DR+(p=0.102). In the non-GCB DLBCLs in turn, HLA I positivity was more frequent (B2M, P=0.007; HLA-ABC, p=0.108), cytotoxic T-cells more often granzyme B+(Figure 1C), T-cells TBET+(p=0.018) and LAG3+TIM3+(p=0.033). A high proportion of granzyme B+cells (p=0.002), PD1+cells (p=0.02) and TIM3+CD4+T-cells (p=0.006) from all cells translated to adverse overall survival (OS) in the patients with non-GCB DLBCL, all independent of the IPI. In contrast, a high proportion of TIM3+cells (p=0.015), and FOXP3+TBET+T-cells (p=0.005) from all cells were associated with poor OS in the patients with GCB DLBCL, also independent of the IPI. Conclusions TME differs significantly between GCB and non-GCB DLBCLs and has subtype-specific prognostic impact on survival. Figure 1 Disclosures Leppa: Roche: Honoraria, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen-Cilag: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 197-197 ◽  
Author(s):  
Elise A. Chong ◽  
Bruce L Levine ◽  
Stephan A. Grupp ◽  
Megan Davis ◽  
Don L. Siegel ◽  
...  

Abstract Introduction: CTL019 is an anti-CD19 genetically modified autologous T-cell immunotherapy developed at the University of Pennsylvania (Penn) that was recently approved for treatment of relapsed/refractory pediatric and young adult B-cell acute lymphoblastic leukemia (ALL) and adult relapsed/refractory diffuse large B-cell lymphoma (DLBCL) as tisagenlecleucel (Novartis). For ALL, the FDA-approved dose is 0.2 to 5.0 x 106 CAR-positive viable T cells per kg of body weight for patients ≤ 50 kg or 0.1 to 2.5 x 108 CAR-positive viable T cells for pts > 50 kg; for DLBCL, the FDA-approved dose is 0.6 to 6.0 x 108 CAR-positive viable T cells. For CTL019 manufactured at Penn, the dose is determined by flow cytometric staining of CAR-positive T cells, which are cryopreserved in product bags along with replicate aliquots of the final formulation in vials, simultaneously cryopreserved for release testing. The CTL019 product release criteria include a post thaw viability assessment using a vial of replicate aliquot of the final formulation for Trypan blue exclusion or dual fluorescence automated cell counting (Luna-FL, Logos Biosystems). There are no published data examining the relationship between CTL019 viability release testing and clinical outcomes. Methods: We analyzed CTL019 post thaw viability release testing in patients treated on one prospective single institution clinical trial of CD19-expressing non-Hodgkin lymphomas (NHL) (NCT02030834) and two single-institution prospective pediatric ALL clinical trials (NCT01626495 and NCT02906371). Patients were assessed for response to therapy and CAR T-cell expansion. Receiver operating characteristic (ROC) curves were constructed for prediction of complete responses based on sensitivity and specificity of CAR T-cell product post thaw viability release test results. Results: 39 pts with relapsed/refractory NHL (24 diffuse large B-cell lymphoma and 15 follicular lymphoma) were enrolled and received the protocol-specified dose of CTL019. Best response rate was 56% (22/39) complete responses (CR). 123 pts with relapsed/refractory pediatric ALL were enrolled and received the protocol-specified dose of CTL019. Best response rate was 96% (118/123) CR/complete remission with incomplete blood count recovery (CRi). For patients with NHL infused with CTL019, product % viability had a median of 89.8% viability (range: 73.7%-97.7%); product % viability quintiles were as follows: 20%-tile=81.7%, 40%-tile=88.3%, 60%-tile=91.1%, 80%-tile=94.8%). ROC area for NHL patients was 0.47 (95%CI: 0.28-0.65). For patients with ALL infused with CTL019, product % viability had a median of 89.3% viability (range: 56.0%-98.4%); product % viability quintiles were as follows: 20%-tile=82.3%, 40%-tile=87.5%, 60%-tile=90.9%, 80%-tile=94.4%). ROC area for ALL patients was 0.52 (95%CI: 0.32-0.71). For patients with NHL, progression-free survival (PFS) was not significantly influenced by product viability release test results by Cox proportional hazards (HR: 1.0, 95%CI: 0.94-1.09, p=0.7). For patients with NHL, peak CAR T-cell expansion was not significantly correlated with product viability release test results (r2=0.12, p=0.5). Data collection for Cox analysis to investigate the effect of release test viability on PFS and correlation of release test viability with peak CTL019 expansion in ALL is ongoing and will be presented. Conclusions: Our data suggest that, within the ranges obtained in these trials, there is no clear dose-response relationship between CTL019 product viability release test results and clinical response rates in pediatric and young adult ALL or DLBCL. Figure Figure. Disclosures Chong: Novartis: Consultancy. Levine:Cure Genetics: Consultancy; Brammer Bio: Consultancy; CRC Oncology: Consultancy; Incysus: Consultancy; Novartis: Consultancy, Patents & Royalties, Research Funding; Tmunity Therapeutics: Equity Ownership, Research Funding. Grupp:Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Adaptimmune: Consultancy; University of Pennsylvania: Patents & Royalties; Jazz Pharmaceuticals: Consultancy. Davis:Novartis Institutes for Biomedical Research, Inc.: Patents & Royalties. Siegel:Novartis: Research Funding. Maude:Novartis Pharmaceuticals Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees. Frey:Novartis: Consultancy; Servier Consultancy: Consultancy. Porter:Genentech: Other: Spouse employment; Novartis: Other: Advisory board, Patents & Royalties, Research Funding; Kite Pharma: Other: Advisory board. June:Immune Design: Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Celldex: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Immune Design: Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding. Schuster:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Dava Oncology: Consultancy, Honoraria; Merck: Consultancy, Honoraria, Research Funding; Novartis Pharmaceuticals Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Nordic Nanovector: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Genentech: Honoraria, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1680-1680 ◽  
Author(s):  
Alexandre V. Hirayama ◽  
Jordan Gauthier ◽  
Kevin A. Hay ◽  
Alyssa Sheih ◽  
Sindhu Cherian ◽  
...  

Abstract Introduction Autologous T cells engineered to express a CD19-specific chimeric antigen receptor (CAR) have shown high overall response rates (ORR) in otherwise treatment-refractory CD19+ B-cell non-Hodgkin lymphoma (NHL); however, not all patients (pts) achieve complete remission (CR). PD-L1 expression on tumor cells and/or other tissues could impair the function of PD-1+ CAR-T cells and the efficacy of CD19 CAR-T cell immunotherapy. PD-1 pathway blockade may enhance the function and antitumor activity of CD19 CAR-T cells. Here we report preliminary data from a phase 1 dose-finding study (NCT02706405) of the safety and feasibility of combination therapy with JCAR014 CD19-specific 4-1BB-costimulated CAR-T cells and escalating doses of durvalumab, an anti-PD-L1 monoclonal antibody, in adults with relapsed/refractory aggressive B-cell NHL. Methods Pts are treated in one of two groups. All pts receive lymphodepletion chemotherapy with cyclophosphamide and fludarabine followed by infusion of JCAR014. Pts in group 1 receive the first infusion of durvalumab (225 mg, 750 mg, or 1500 mg) 21-28 days after treatment with JCAR014. Pts in group 2 receive the first dose of durvalumab (7.5 mg, 22.5 mg, 75 mg, 225 mg, 750 mg, or 1500 mg) 1 day prior to JCAR014 infusion. Up to 10 doses of durvalumab are administered after JCAR014 at the highest identified safe dose at 4-week intervals until toxicity or disease progression. We evaluated the safety, tolerability, and efficacy of the combination therapy and the pharmacokinetic profile of JCAR014 after infusion. Adverse events were graded using the Common Terminology Criteria for Adverse Events (CTCAE) v4.03, with the exception of cytokine release syndrome (CRS), which was graded according to consensus criteria (Lee, Blood 2014). Positron emission tomography/computed tomography was performed approximately 1, 2, 4, 6, 9, and 12 months after JCAR014 infusion and the best anti-tumor response was reported according to the Lugano criteria (Cheson, JCO 2014). Results Patient characteristics are shown in Table 1. Fifteen pts have been treated, including 6 in group 1 who received post-JCAR014 durvalumab doses of 225 mg (n = 3) and 750 mg (n = 3), and 9 in group 2 who received pre-JCAR014 durvalumab doses of 7.5 mg (n = 1), 22.5 mg (n = 1), 75 mg (n = 3), or 225 mg (n = 4). Durvalumab dose escalation is ongoing. JCAR014 manufacturing was successful for all pts. All pts received 2 x 106 JCAR014 CAR-T cells/kg, except the first 2 pts treated on the study who received 7 x 105 CAR-T cells/kg. Of the 13 pts who received JCAR014 at 2 x 106 CAR-T cells/kg, 5 pts (38%) developed CRS (2 grade 1, 2 grade 2, and 1 grade 4) and one (8%) developed grade 1 neurotoxicity. CRS and/or neurotoxicity occurred within 4 weeks of JCAR014 infusion, and were not observed when durvalumab was administered after JCAR014. With the exception of B cell aplasia, no autoimmune adverse events were observed. Twelve of 13 pts who received 2 x 106 CAR-T cells/kg were evaluable for response. One patient, who had grade 4 CRS and biopsy evidence of extensive CAR-T cell infiltration into persistent sites of disease, elected to receive hospice care and died on day 32 after JCAR014 infusion without full response evaluation. The overall response rate was 50% (5 CR, 42%; 1 PR, 8%). Of the 5 pts who achieved CR, 3 were in CR at the first restaging after JCAR014 and 2 subsequently converted to CR after the first post-JCAR014 durvalumab infusion. Only one patient who achieved CR has relapsed (median follow-up 10.6 months, range 3.7-11.8). Continued stable disease or evidence of regression was seen in 4 of 6 (67%) initially non-responding pts who continued durvalumab therapy (median 5 doses, range 1-6). CAR-T cell counts expanded in the peripheral blood within 14 days of JCAR014 infusion in all pts. Higher peak and day 28 CAR-T cell copy numbers in blood by qPCR were observed in responding pts. CAR-T cells were detected for a median of 5.1 months (range, 1.7 to 9.1 months) in responding pts. In vivo re-accumulation of CAR-T cells after the first post-JCAR014 durvalumab dose was observed in the blood of two patients in group 2. Conclusion The combination of JCAR014 with durvalumab for the treatment of adult pts with aggressive B-cell NHL appears safe; however, dose escalation is ongoing. Complete responses were observed both at initial restaging after JCAR014 infusion, and also subsequently in pts continuing durvalumab therapy after initially failing to achieve CR. Disclosures Hirayama: DAVA Oncology: Honoraria. Hay:DAVA Oncology: Honoraria. Till:Mustang Bio: Patents & Royalties, Research Funding. Kiem:Homology Medicine: Consultancy; Magenta: Consultancy; Rocket Pharmaceuticals: Consultancy. Shadman:Verastem: Consultancy; Beigene: Research Funding; Mustang Biopharma: Research Funding; Gilead Sciences: Research Funding; TG Therapeutics: Research Funding; AbbVie: Consultancy; Genentech: Research Funding; Pharmacyclics: Research Funding; Celgene: Research Funding; Qilu Puget Sound Biotherapeutics: Consultancy; Genentech: Consultancy; AstraZeneca: Consultancy; Acerta Pharma: Research Funding. Cassaday:Jazz Pharmaceuticals: Consultancy; Amgen: Consultancy, Research Funding; Merck: Research Funding; Seattle Genetics: Other: Spouse Employment, Research Funding; Pfizer: Consultancy, Research Funding; Adaptive Biotechnologies: Consultancy; Kite Pharma: Research Funding; Incyte: Research Funding. Acharya:Juno Therapeutics: Research Funding; Teva: Honoraria. Riddell:Cell Medica: Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Adaptive Biotechnologies: Consultancy; NOHLA: Consultancy. Maloney:Roche/Genentech: Honoraria; Juno Therapeutics: Research Funding; Janssen Scientific Affairs: Honoraria; GlaxoSmithKline: Research Funding; Seattle Genetics: Honoraria. Turtle:Precision Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Consultancy; Bluebird Bio: Consultancy; Gilead: Consultancy; Nektar Therapeutics: Consultancy, Research Funding; Eureka Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics / Celgene: Consultancy, Patents & Royalties, Research Funding; Caribou Biosciences: Consultancy; Aptevo: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3488-3488
Author(s):  
Jinsheng Weng ◽  
Kelsey Moriarty ◽  
Yong Pan ◽  
Man Chun John MA ◽  
Rohit Mathur ◽  
...  

Abstract Chimeric antigen receptor (CAR)-modified T-cell therapy targeting CD19 induces high response rates in patients with relapsed or refractory B-cell lymphomas. However, about 60% of patients experience primary or secondary resistance after CD19-targeted CAR T-cell therapy and a major of cause of failure appears to be due to loss of CD19 expression on the tumor. Therefore, novel targets for adoptive T-cell therapeutic approaches are needed to further improve clinical outcome in these patients. T-cell leukemia/lymphoma antigen1 (TCL1) is an oncoprotein that is overexpressed in multiple B-cell malignancies including follicular lymphoma (FL), mantle cell lymphoma (MCL), diffuse large B-cell lymphoma (DLBCL), and chronic lymphocytic leukemia (CLL). Importantly, it has restricted expression in only a subset of B cells among normal tissues. We previously identified a TCL1-derived HLA-A2-binding epitope (TCL170-79 SLLPIMWQLY) that can be used to generate TCL1-specific CD8+ T cells from peripheral blood mononuclear cells of both HLA-A2+ normal donors and lymphoma patients. More importantly, we showed that the TCL1-specific CD8+ T cells lysed autologous primary lymphoma cells but not normal B cells (Weng et al. Blood 2012). To translate the above discovery into clinic, we cloned the T-cell receptor (TCR) alpha and beta chains from a TCL1-specific CD8+ T-cell clone and showed that this TCL1-TCR could be transduced into polyclonal donor T cells using a lentiviral system with a transduction efficiency of >40% as determined by TCL170-79 tetramer positive T cells. Furthermore, we demonstrated that the TCL1-TCR-transduced T cells recognized T2 cells pulsed with TCL170-79 peptide producing IFN- γ >8 ng/ml and IL-2 >350 ng/ml but were not reactive to control HIV-Gag peptide (IFN- γ <0.1 ng/ml and IL-2 <0.2 ng/ml). The TCL1-TCR-transduced T cells recognized TCL170-79 peptide pulsed onto T2 cells at a concentration of 1-10 nM (IL-2 >10 ng/ml) suggesting it has moderate to high avidity. Importantly, TCL1-TCR-transduced T cells lysed HLA-A2+ (up to 43% lysis of Mino and 25% lysis of Jeko-1 at 40:1 Effector:Target ratio) but not HLA-A2- lymphoma cell lines (5.5% lysis of HLA A2- Raji and 2.3% lysis of Daudi at 40:1 Effector:Target ratio). TCL1-TCR-transduced T cells were also cytotoxic to HLA-A2+ primary lymphoma tumor cells (up to 48% lysis of CLL, 43% lysis of FL, 41% lysis of DLBCL, 46% lysis of splenic marginal zone lymphoma, and 11% lysis of MCL at 40:1 Effector:Target ratio) but not normal B cells derived from the same patients. Lastly, TCL1-TCR transduced T cells showed high efficacy in in vivo models. Adoptive transfer of the TCL1-TCR-tranduced T cells significantly reduced lymphoma tumor growth and extended survival in Mino mantle cell lymphoma cell line xenograft model (48% survival in TCL1-TCR-T treated group vs. 12.5% survival in control group at 10 weeks n=7-8 mice/group; P=0.02). Collectively, our data suggest that the high expression in B-cell tumors, restricted expression in normal tissues, and presence of an immunogenic CD8 T-cell epitope, make TCL1 a target for T cell-based therapeutic approaches in multiple B-cell malignancies. Our results also demonstrate that the TCL1-specific TCR-transduced T cells may serve as a novel adoptive immunotherapy approach for the treatment of patients with various B-cell malignancies (including FL, MCL, DLBCL, CLL). Acknowledgments: This study is supported by MD Anderson Moon Shot Program and CPRIT and the National Natural Science Foundation of China Grant (No. 81570189) Disclosures Neelapu: Kite/Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cellectis: Research Funding; Poseida: Research Funding; Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta: Research Funding; Karus: Research Funding; Bristol-Myers Squibb: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 163-163
Author(s):  
Marco Ruella ◽  
Mireia Uribe-Herranz ◽  
Silvia Beghi ◽  
Kalpana Parvathaneni ◽  
Nektarios Kostopoulos ◽  
...  

Abstract Background: Chimeric Antigen Receptor (CAR) T cell immunotherapy has revolutionized the treatment of B-cell malignancies. However, a significant subset of these patients either fails to respond or eventually relapses. Moreover, in solid cancers, CAR T immunotherapy has had little to no success in the clinic so far. In recent years, several studies have shown the influence of commensal gut microbes on T cell function, in particular in the setting of checkpoint immunotherapy. Our group has recently demonstrated that modulation of the gut microbiota using antibiotics such as oral vancomycin (vanco) can enhance the efficacy of tumor-specific T cells in animal models. In this study, we sought to study the effect of vanco-induced dysbiosis on CART immunotherapy using murine models and clinical correlates. Methods and Results: We used the CD19+ A20 lymphoma and the B16 melanoma (transduced with CD19) murine models. Lymphoma- and melanoma-bearing mice were randomized to received oral vanco or vehicle alone (CTR), or in combination with either control untransduced murine T cells (UTD) or murine CART19 (4-1BB). Oral vanco or vehicle treatments started on the day of A20 cells injection and throughout the duration of the experiment (40-45 days). A20-bearing mice treated with CART19+vanco showed strikingly improved tumor control compared to either vanco alone or UTD+vanco (day 40 tumor volume in mm 3 (mean ± s.e.m): CTR=1,678.8±279.4, UTD=1,803.2±180, UTD+vanco=1,477±174, CART19=1,219±208, CART19+vanco=439.5±122.5 , CART versus CART+vanco Two Way Anova P &lt;0.0001). Of note, CART19+vanco also displayed a longer overall survival as compared to controls (UTD= 0/7 alive at day 45 (0%), UTD+vanco= 2/7 (28.6%), CART19= 4/8 (50%), CART+vanco= 8/8 (100%)). To evaluate whether gut microbiota modulation improves CART therapy against solid tumors, we engrafted mice with CD19+ B16 melanoma cells and treated them with murine CART19 or control T-cells with or without vanco. Mice receiving CART+vanco displayed increased tumor control as compared to CART alone (day 21 tumor volume in mm 3 mean ± s.e.m. CTR=1,820.7±131.3, UTD=1,315.9±360.8, UTD+vanco=1,223.6±297.3, CART=1,315±360.8, CART+vanco=443.8±131.9, Two Way Anova CART versus CART+vanco P &lt;0.0001). To investigate the mechanisms responsible for the improved anti-tumor activity, we analyzed gene-expression (nanoString) of 770 immune-oncology targets in tumor samples collected at day 5 after CART. The Ingenuity analysis showed up-regulation of the cross-presentation pathway in tumors of vanco+CART mice but not in CART alone. The functional validation of this mechanism was performed exploiting the physiological expression in A20 cells of the endogenous ecotropic murine leukemia provirus antigen gp70, also expressed in the colorectal cancer cell line CT26, which, however, lacks CD19 expression. Hence, purified T cells from CART19-treated A20-bearing mice were transferred into mice engrafted with CT26 tumors. These adoptively transferred T cells from CART+vanco group - but not the T cells obtained from mice treated with CART alone - displayed significant anti-tumor activity, (day 19 tumor volume in mm 3 (mean ± s.e.m): CTR= 1,360.6±123.3, CT26+CART= 932.9±234.9, CART+vanco= 402.5±139.4, Two Way Anova CART versus CART+vanco P&lt;0.0044). To validate these data, we generated patient-derived gut microbiota avatars, performing a "human to mouse FMT" and observed increased antigen presentation in avatars treated with CART19+vanco. Lastly, in a cohort of 30 B-cell acute lymphoblastic leukemia patients treated with CART19 (CTL019, NCT02030847), 4 patients exposed to oral vanco in the first 3 weeks after CART infusion showed higher CART19 peak expansion and higher peak cytokine levels (IL6, IL10, IL1Ra) in 3/4 patients exposed to oral vanco compared with matched unexposed patients. Conclusions: These results suggest that the modulation of the gut microbiota using vancomycin affects the outcome of CART therapy in preclinical models with better anti-tumor effect via cross-priming and enhanced CART expansion in tumor samples. In a retrospective cohort of patients with B-ALL receiving vancomycin after CART19 therapy, we observed higher CART expansion and serum inflammatory cytokines. Based on these observations, a clinical trial of oral vanco in patients receiving CD19-directed CAR T cells for B-cell lymphomas is planned. Disclosures Ruella: viTToria biotherapeutics: Research Funding; Tmunity: Patents & Royalties; Novartis: Patents & Royalties; BMS, BAYER, GSK: Consultancy; AbClon: Consultancy, Research Funding. Frey: Novartis: Research Funding; Sana Biotechnology: Consultancy; Kite Pharma: Consultancy; Syndax Pharmaceuticals: Consultancy. June: Tmunity, DeCART, BluesphereBio, Carisma, Cellares, Celldex, Cabaletta, Poseida, Verismo, Ziopharm: Current equity holder in publicly-traded company; AC Immune, DeCART, BluesphereBio, Carisma, Cellares, Celldex, Cabaletta, Poseida, Verismo, Ziopharm: Consultancy; Novartis: Patents & Royalties. Porter: American Society for Transplantation and Cellular Therapy: Honoraria; ASH: Membership on an entity's Board of Directors or advisory committees; DeCart: Membership on an entity's Board of Directors or advisory committees; Genentech: Current Employment, Current equity holder in publicly-traded company; Incyte: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Kite/Gilead: Membership on an entity's Board of Directors or advisory committees; National Marrow Donor Program: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Unity: Patents & Royalties; Wiley and Sons Publishing: Honoraria. Schuster: TG Theraputics: Research Funding; Incyte: Research Funding; Adaptive Biotechnologies: Research Funding; Pharmacyclics: Research Funding; Merck: Research Funding; Genentech/Roche: Consultancy, Research Funding; Tessa Theraputics: Consultancy; Loxo Oncology: Consultancy; Juno Theraputics: Consultancy, Research Funding; BeiGene: Consultancy; Alimera Sciences: Consultancy; Acerta Pharma/AstraZeneca: Consultancy; Novartis: Consultancy, Honoraria, Patents & Royalties, Research Funding; Abbvie: Consultancy, Research Funding; Nordic Nanovector: Consultancy; Celgene: Consultancy, Honoraria, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 8-9
Author(s):  
Christie P.M. Verkleij ◽  
Marloes Broekmans ◽  
Amy Wong ◽  
Sonja Zweegman ◽  
Raluca Verona ◽  
...  

Introduction: New immunotherapies directed against CD38, SLAMF7 or BCMA have significantly improved the outcome of multiple myeloma (MM) patients. However, most patients eventually relapse, underscoring the need for additional immunotherapeutic targets. We have previously shown that expression levels of GPRC5D, an orphan G protein-coupled receptor, are significantly higher on MM cells, compared to normal plasma cells or other immune cells. We also showed that the novel GPRC5DxCD3 bispecific antibody (BsAb) JNJ-7564, has promising anti-MM activity in patient-derived BM samples (Verkleij et al., EHA 2019). To elucidate which factors contribute to the observed heterogeneity in ex vivo response, we analyzed the impact of tumor and patient characteristics on efficacy of JNJ-7564. We further investigated whether tumor-intrinsic factors may be determinants of response by also testing in these assays JNJ-7957, a BCMA-targeting BsAb that differs from JNJ-7564 only in the tumor-antigen-binding domain. Methods: Bone marrow (BM) samples obtained from 13 newly diagnosed (ND), 17 daratumumab-naive relapsed/refractory (DARA-naive RR; median of 3 prior therapies) and 15 daratumumab-refractory (DARA-R, median of 6 prior therapies) MM patients were analyzed for tumor- and immune cell composition, and subsequently incubated with JNJ-7564 (0.00128-4.0 µg/mL) or JNJ-7957 (0.8 µg/mL). After 48 hours, MM cell lysis was assessed by flow cytometry. Luciferase-transduced MM cell lines were incubated with JNJ-7564 (0.032-4.0 µg/mL) in the presence of healthy peripheral blood mononuclear cells (PBMCs), purified CD4+CD25- T-cells or regulatory T-cells (Tregs). After 48 hours, MM cell lysis was assessed by bioluminescence assay. Results: We found no difference in JNJ-7564 efficacy with respect to disease stage (NDMM vs DARA-naive RRMM vs DARA-R MM, P=0.48). Importantly, the presence of high-risk cytogenetic abnormalities [del(17p), t(4;14) and t(14;16)] did not impair JNJ-7564 efficacy. The level of target expression was an important determinant of response, as evidenced by superior MM cell lysis in samples with higher than median GPRC5D expression, when compared to lower GPRC5D expression (Fig. 1A). Inferior MM cell lysis was observed in older patients (&gt;67 years), in samples with low T-cell counts or low effector:target (E:T) ratios, and in those with a high frequency of PD-1+ T-cells, HLA-DR+ activated T-cells, or Tregs. These determinants of response also affected JNJ-7564-mediated T-cell activation and degranulation. To further analyze the impact of Tregs, we performed additional cell line experiments. Purified Tregs impaired T-cell proliferation, and were significantly less potent to kill MM cells when redirected by JNJ-7564, compared to CD4+CD25- T-cells (Fig. 1B). This was accompanied by reduced secretion of IFN-γ, TNF-α, IL-2 and granzyme B. To evaluate the impact of BM stromal cells (BMSCs) on JNJ-7564 activity, MM cell lines were co-incubated with PBMCs and patient-derived BMSCs. Direct cell-cell contact hampered MM cell lysis, while indirect contact (transwell) did not affect JNJ-7564 activity. Direct contact also decreased secretion of TNF-α and IL-2, and reduced GPRC5D expression on MM cells, contributing to BMSC-mediated resistance to JNJ-7564. Finally, we simultaneously evaluated the single agent activity of both JNJ-7564 and JNJ-7957 (0.8 µg/mL, dose whereby a plateau in MM cell lysis was observed with both BsAbs) in 40 BM samples. MM cell lysis induced by both agents was strongly correlated (Fig. 1C). In 6 samples, both agents exhibited poor activity (&lt;45% lysis), whereas in 9 samples very good activity was observed (&gt;80% lysis). Comparison of characteristics between these groups showed that a low E:T ratio (Fig. 1D) and high frequency of Tregs (Fig. 1E) significantly impaired efficacy of both BsAbs, suggesting patient-specific factors can determine response to T-cell redirectors targeting different antigens. Conclusion: We show that tumor-related factors, such as GPRC5D expression, as well as differences in the composition of the BM microenvironment, including E:T ratio, frequency of PD-1+ or HLA-DR+ T-cells or immune-suppressing Tregs or BMSCs, contribute to the variability in response to JNJ-7564. Our data indicate that strategies aiming at optimizing E:T ratio (e.g. induction therapy) or Treg depletion, may improve response to T-cell redirecting antibodies in MM. Disclosures Wong: Jhonson & Jhonson: Current Employment. Zweegman:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees. Verona:Johnson & Johnson: Current Employment, Current equity holder in publicly-traded company. Adams:Johnson & Johnson: Ended employment in the past 24 months. Mutis:Janssen Pharmaceuticals: Research Funding; Genmab: Research Funding; Takeda: Research Funding; Onkimmune: Research Funding; Gadeta: Research Funding. van de Donk:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Bayer: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Ferrer: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 23-24
Author(s):  
Yaya Chu ◽  
Susiyan Jiang ◽  
Jian Jiang ◽  
Meijuan Tian ◽  
Dean Anthony Lee ◽  
...  

Background: The CD20 molecule is universally expressed by normal B cells in all stages of development, from the pre-B cell up to the mature plasma cell as well as by most B cell malignancies including CLL, FL and BL (Chu/Cairo, BJH, 2016). Rituximab, a monoclonal chimeric anti-CD20 antibody, has been widely used as a chemoimmunotherapeutic regimen in the frontline therapy for patients with CD20+ BL and diffuse large B-cell lymphoma. The addition of rituximab to the CHOP backbone or to standard FAB/LMB therapy has greatly improved outcomes without significantly increasing toxicity in patients with B-NHL (Goldman/Cairo, Leukemia, 2013, Coiffier et al, NEJM, 2002). However, patients who relapse have a poor clinical response to rituximab retreatment. Obinutuzumab is a humanized, type II anti-CD20 monoclonal antibody glycoengineered to enhance Fc receptor affinity. It has lower complement-dependent cytotoxicity than rituximab but greater ADCC, phagocytosis and direct B-cell killing effects (Chu/Cairo, BJH, 2018). Obinutuzumab has been successfully utilized in front-line therapy in FLL (Marcus, et al, NEJM, 2017) and CLL (Goede, et al, NEJM, 2014; Moreno, et al, Lancet, 2019). Our group has successfully expanded functional and active peripheral blood NK cells PBNKwith irradiated feeder cells to target B-NHL (Chu/Cairo, et al, Can Imm Res 2015). We previously demonstrated that obinutuzumab has significantly enhanced expanded PBNK mediated cytotoxicity against BL and pre-B-ALL cell lines compared to rituximab (Tiwari/Cairo et al, BJH, 2015). NKTR-255 is an IL-15 receptor agonist designed to activate the IL-15 pathway and expand natural killer (NK) cells and promote the survival and expansion of memory CD8+ T cells without inducing suppressive regulatory T cells (Kuo/Zalevsky, Cancer Res. 2017). NKTR-255 stimulates proliferation and survival of NK, CD8+ T cells, and enhances long-term immunological memory which may lead to sustained anti-tumor immune response. Objective: To investigate the effects of NKTR-255 on the ADCC of expanded NK cells with anti-CD20 type I and type II antibodies against CLL, FL and rituximab-resistant BL. Methods: NK cells were expanded with lethally irradiated K562-mbIL21-41BBL cells as previously described (Denman/Dean Lee, PLoS One, 2012). Expanded PBNK cells were isolated using Miltenyi NK cell isolation kit. NKTR-255 was generously provided by Nektar Therapeutics. In vitro cytotoxicity was examined using luminescence reporter-based assays. IFNg, granzyme B and perforin levels were examined by standard enzyme-linked immunosorbent assays as we previously described (Chu/Cairo, ASH, 2018). MEC-1 (CLL), PGA-1 (CLL), DOHH2 (FL) and Rituximab-resistant BL cells Raji-2R and Raji-4RH were used as target cells. Results: NKTR-255 significantly enhanced the in vitro cytotoxicity of expanded NK cells when combined with rituximab against MEC-1 (E:T=3:1, p&lt;0.001), PGA-1 (E:T=3:1, p&lt;0.001), and DOHH2 (E:T=3:1, p&lt;0.001) as compared to the control groups (Fig.1A). NKTR-255 also significantly enhanced granzyme and perforin release from expanded NK cells when combined with rituximab against MEC-1 (granzyme: p&lt;0.05; perforin: p&lt;0.001), PGA-1(granzyme: p&lt;0.05; perforin: p&lt;0.05), DOHH2 (granzyme: p&lt;0.05; perforin: p&lt;0.001) as compared to controls. NKTR-255 significantly enhanced the in vitro cytoxicity of expanded NK cells when combined with obinutuzumab agains rituximab-resistant BL cells like Raji-2R (E:T=3:1, p &lt;0.01), and Raji-4RH (E:T=3:1, p&lt;0.01) as compared to the control groups (Fig.1B). NKTR-255 also significantly enhanced IFN-g, granzyme and perforin release from expanded NK cells when combined with obinutuzumab against Raji-2R (E:T=3:1, IFN-g: p&lt;0.001, granzyme: p&lt;0.001 and perforin: p&lt;0.001) and Raji-4RH (E:T=3:1, IFN-g: p&lt;0.001, granzyme: p&lt;0.01 and perforin: p&lt;0.01) as compared to controls. Conclusion: We found that NKTR-255 significantly enhanced the ADCC of expanded NK cells with anti-CD20 type I and type II antibodies against CLL, FL and rituximab-resistant BL cells in vitro with enhanced IFN-g, granzyme B and perforin release. The in vivo effects of NKTR-255 with expanded NK cells and anti-CD20 type I and type II antibodies against CLL, FL and rituximab-resistant BL cells using humanized NSG models are under investigation. Disclosures Lee: Kiadis Pharma Netherlands B.V: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Madakamutil:Nektar Therapeutics: Current Employment. Marcondes:Nektar Therapeutics: Current Employment. Klein:Roche: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties. Cairo:Nektar Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Miltenyi: Research Funding; Technology Inc/Miltenyi Biotec: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2966-2966 ◽  
Author(s):  
Ian W. Flinn ◽  
Jonathon B. Cohen ◽  
Luke P. Akard ◽  
Samantha Jaglowski ◽  
Michael Vasconcelles ◽  
...  

Abstract Background: Recent regulatory approvals of two CD19-targeted chimeric antigen receptor (CAR)-expressing autologous T lymphocyte therapies provide compelling evidence of the clinical potential of re-engineering T cells to specifically attack tumor cells, but the broader applicability of these therapies is constrained by safety considerations and target specificity. A universal approach to T cell therapy that enables flexibility in tumor target selection has been demonstrated by engineering autologous T cells to express an antibody-coupled T cell receptor (ACTR) composed of the ectodomain of the CD16 Fc receptor fused to costimulatory and CD3ζ signaling domains. Thus, the ACTR platform couples T cell anti-tumor effector functions, including cytotoxicity, cytokine production, and T cell proliferation, to target-specific therapeutic antibodies. Here we present the preliminary clinical findings of the ongoing, multicenter Phase 1 study, ATTCK-20-03 (NCT03189836), of ACTR707, a CD28-containing ACTR chimeric receptor, in combination with rituximab in subjects with relapsed or refractory CD20+ B cell lymphoma. Methods: The primary objectives of this first-in-human, dose escalation study are to evaluate the safety of the combination of ACTR707 and rituximab and to determine a maximum tolerated dose (MTD) and a proposed recommended phase 2 dose (RP2D). Other objectives include evaluation of antitumor activity, and assessment of ACTR T cell persistence, cytokine levels, and rituximab pharmacokinetics. Eligible subjects must have histologically confirmed relapsed or refractory CD20+ non-Hodgkin lymphoma and have received prior anti-CD20 mAb in combination with chemotherapy. Subjects received lymphodepleting chemotherapy (cyclophosphamide 400 mg/m2 and fludarabine 30 mg/m2) for 3 days, followed by rituximab (375 mg/m2) and ACTR707. Additional doses of rituximab were administered, one dose every 3 weeks in the absence of disease progression. The study is separated into 2 sequential phases, a dose escalation and a safety expansion phase. During the dose escalation phase, ACTR707 is being tested at increasing doses in combination with rituximab. Results: Six subjects were enrolled and received ACTR707 at the first dose level in combination with rituximab: 5 diagnosed with diffuse large B cell lymphoma (83%) and one with follicular lymphoma, Grade 3b (17%). Median age was 61 years (range: 57-76), 83% were male, 50% were treated with ≥3 lines of prior therapy, and 67% had no response to or relapse within 6 months from immediate prior therapy. ACTR707 was successfully manufactured for all subjects and demonstrated post-infusion expansion in the peripheral blood. ACTR+ T cells were detectable at Day 28 post-infusion for all subjects tested. No dose-limiting toxicities (DLTs) were observed at the first dose level in 4 DLT-evaluable subjects (2 subjects experienced disease progression during the DLT evaluation period). There were no cytokine release syndrome (CRS) or autoimmune adverse events (AEs), serious or severe (≥Gr3) neurotoxicity AEs, or deaths on treatment. AEs (all grades) reported in >1 subject included neutropenia (n=3), anemia, decreased appetite, febrile neutropenia, and thrombocytopenia (each in 2 subjects); the 2 events of febrile neutropenia were considered serious. Investigator-reported complete responses were observed in 3 of 6 subjects. These complete responses (duration of response range: 47+ to 81+ days) are ongoing as of the data cut-off. Enrollment into the second dose level is ongoing. Conclusions: ACTR707 in combination with rituximab induced complete responses in 3 of 6 subjects with relapsed or refractory aggressive CD20+ B cell lymphoma treated at the first dose level with ACTR707 in combination with rituximab, with no CRS, serious or severe (≥Gr3) neurotoxicity, or AEs leading to treatment discontinuation. ACTR+ T cells were detectable in all subjects and persisted. These results support the continued dose escalation of ACTR707 in combination with rituximab. Updated data, inclusive of preliminary dose level 2 and correlative biomarkers, will be presented. Disclosures Flinn: Verastem: Consultancy, Research Funding; Janssen: Research Funding; Pfizer: Research Funding; Kite: Research Funding; Forty Seven: Research Funding; BeiGene: Research Funding; ArQule: Research Funding; Takeda: Research Funding; TG Therapeutics: Research Funding; Incyte: Research Funding; Forma: Research Funding; Verastem: Research Funding; Novartis: Research Funding; Agios: Research Funding; Seattle Genetics: Research Funding; Trillium: Research Funding; Merck: Research Funding; Calithera: Research Funding; Constellation: Research Funding; Gilead: Research Funding; Genentech: Research Funding; Infinity: Research Funding; Portola: Research Funding; Pharmacyclics: Research Funding; Curis: Research Funding; Celgene: Research Funding. Cohen:BioInvent: Consultancy; Bristol-Myers Squibb: Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Research Funding; Infinity Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Research Funding. Akard:Gilead: Speakers Bureau; Celgene: Speakers Bureau; Takeda: Speakers Bureau; Novartis: Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau. Jaglowski:Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Kite Pharma: Consultancy, Research Funding; Juno: Consultancy. Vasconcelles:Unum Therapeutics: Employment. Ranger:Unum Therapeutics: Employment. Harris:Unum Therapeutics: Employment. Payumo:Unum Therapeutics: Employment. Motz:Unum Therapeutics: Employment. Bachanova:Gamida Cell: Research Funding; Kite Pharma: Membership on an entity's Board of Directors or advisory committees; GT Biopharma: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 728-728 ◽  
Author(s):  
Reona Sakemura ◽  
Nan Yang ◽  
Michelle J. Cox ◽  
Sutapa Sinha ◽  
Mehrdad Hefazi ◽  
...  

Abstract Despite the remarkable outcomes and recent FDA approval of CD19 directed chimeric antigen receptor T (CART19) cell therapy in B cell malignancies, the durable responses in diffuse large B cell lymphoma are less than 40% and CART activity in chronic lymphocytic leukemia (CLL) is further limited. This is thought to be related to loss of CART persistence, poor trafficking to lymph nodes and inhibition by the leukemic microenvironment. Therefore, strategies to enhance CART cell function to overcome these limitations are needed. Recent studies have shown that abnormal expression of the receptor tyrosine kinase (RTK) AXL is associated with poor prognosis in human cancers. AXL signaling is associated with tumor proliferation, survival, metastasis, and drug resistance. Inhibition of AXL RTK with TP-0903, a high affinity AXL inhibitor has been found to induce robust apoptosis of CLL B cells. Based on the significant modulation of T cell functions observed with BTK inhibitor, we examined the role of AXL RTK inhibition with TP-0903 on T cell function in CLL and other B cell malignancies. First, we investigated the effect of AXL inhibition on T cell phenotype in normal donors. When naïve T cells were stimulated with PMA/Ionomycin and cultured with low dose TP0903, cytokine production was favorably altered through the promotion of Th1 and reduction of Th2 cytokines. This was associated with a significant reduction of inhibitory receptors (Fig 1a). Western blot of T cell lysates suggests low dose TP-0903 results in inhibition of LCK. When effector T cells and regulatory T cells (Treg) were treated with TP-0903 for 3 days, there was a preferential reduction of Treg (Fig 1b). Next, we investigated the influence of TP-0903 on CART19 cell phenotype and functions. Here, we used 41BB costimulated, lentiviral-transduced CART cells. Similar to our findings on naïve T cells, TP-0903 treatment led to polarization of CART cells into a Th1 phenotype when T cells were stimulated with the CD19+ mantle cell lymphoma (MCL) cell line JeKo or with leukemic B cells isolated from CLL patients (Fig 1c). TP-0903 treatment also significantly downregulated inhibitory receptors on activated CART cells, including a reduction of canonical cytokines known to be associated with the development of cytokine release syndrome (CRS) (Fig 1c). The combination of CART19 cells and TP-0903 yielded a synergistic antitumor activity against JeKo in vitro, at low E:T ratios (Fig 1d). Western blot of T cell lysates revealed phosphorylation of LCK was remarkably reduced in the presence of TP-0903, suggesting a mechanism for the observed Th1 polarization. We compared the transcriptome of activated CART cells treated with TP-0903 and more than 100 genes were differentially expressed compared to non-treated cells. Among these genes, immune synapse related genes such as cell junction and cell migration related genes were significantly increased in activated CART cells treated with TP-0903. To investigate the effect of AXL RTK inhibition of CART cells with TP-0903 in vivo, we established MCL xenografts through the injection of 1.0x106 of JeKo into NSG mice. A week after the injection of JeKo, mice were treated with either vehicle alone, TP-0903 (20mg/kg/day) alone, 0.5x106 of CART19 alone, or TP-0903 (20mg/kg/day)+0.5x106 of CART19. Three weeks after the treatment, mice were rechallenged with 1.0x106 of JeKo. Mice treated with CART19 and TP-0903 rejected the JeKo tumor challenge while mice previously treated with CART19 alone redeveloped JeKo, suggesting that AXL inhibition enhanced CART cell persistence (Fig 1e). Finally, we validated our preclinical findings in a correlative analyses of Phase I clinical trial of TP-0903 for patients with solid tumors (NCT02729298). Blood T cells from 3 patients were isolated and analyzed before and a week after treatment with TP-0903. Similar to our findings, there was a significant reduction in Tregs, reduction of inhibitory receptors and polarization to a Th1 phenotype. These findings will be further investigated in a planned Phase I clinical trial of TP-0903 in relapsed/refractory CLL (NCT03572634). In summary, we demonstrated for the first time that AXL inhibitior is capable of polarizing T cells into a Th1 phenotype, downregulates inhibitory receptors, reduces CRS associated cytokines and synergizes with CART cells in B cell malignancies. These findings encourage further study of TP-0903 as an enhancer of T cell immunotherapies. Disclosures Mouritsen: Tolero Pharmaceuticals: Employment. Foulks:Tolero Pharmaceuticals: Employment. Warner:Tolero Pharmaceuticals: Employment. Parikh:Janssen: Research Funding; Abbvie: Honoraria, Research Funding; AstraZeneca: Honoraria, Research Funding; MorphoSys: Research Funding; Pharmacyclics: Honoraria, Research Funding; Gilead: Honoraria. Ding:Merck: Research Funding. Kay:Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Infinity Pharm: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta: Research Funding; Agios Pharm: Membership on an entity's Board of Directors or advisory committees; Cytomx Therapeutics: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees. Kenderian:Tolero Pharmaceuticals: Research Funding; Humanigen: Research Funding; Novartis: Patents & Royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 477-477
Author(s):  
Shih-Shih Chen ◽  
Constantine S. Tam ◽  
Alan G. Ramsay ◽  
Priyadarshini Ravichandran ◽  
Natalia C. Couto-Francisco ◽  
...  

Bruton's tyrosine kinases inhibitors (BTKis) represent major advances in CLL therapy. However resistance to this form of therapy is emerging, and such patients often progress more rapidly. Hence there is an important need for therapies that address resistance. Microenvironmental input like IL-4 is critical for CLL disease progression. Compared with normal B cells, CLL cells exhibit significantly higher levels of surface membrane (sm) IL-4 receptor (IL4-R) and contain increased amounts of pSTAT6, a downstream mediator of IL-4R signaling. IL-4 stimulation of CLL B cells suppresses smCXCR4 and increases smIgM, thus promotes CLL cell retention and expansion. In this study, we aimed to examine if smIL-4R expression, IL4R signaling, and IL-4-producing cells are altered in patients sensitive or resistant to BTKis. To do so, T and B cell subset changes were studied overtime in 12 acalabrutinib-treated CLL patients, 6 zanubrutinib-treated CLL patients, 30 ibrutinib-sensitive and 5 ibrutinib-resistant CLL patients, 4 of which exhibited BTK mutations. Consistent with only ibrutinib inhibiting T-cell kinase (ITK), T-cell subset analyses revealed no changes in Th1, Th2, Th17, Th9, and Th22 cells after zanubrutinib or acalabrutinib treatment. In contrast, a Th1-biased T-cell immunity was observed in patients responsive to ibrutinib. In patients progressing on ibrutinib, significantly reduced Th2 T cells were found during the resistant as well as sensitive periods. In an in vitro T-cell function assay using T cells collected before and after the treatment with each BTKi, only ibrutinib treated patients exhibited a reduced ability of T cells to support CLL B cell survival. We next studied changes in CLL B cells, including numbers of IL-4, -10 and -13 producing B cells after BTKi treatment. IL-13 producing CLL B cells were not changed. IL-10 producing CLL B cells were reduced in both ibrutinib sensitive and resistant patients, but not in zanubrutinib or acalabrutinib treated patients. Importantly, IL-4 producing CLL B cells were significantly decreased in patients treated with all 3 BTKi. Significantly reduced smIL-4R levels, impaired IL-4R signaling, decreased smIgM and increased smCXCR4 were also seen in patients treated with each BTKi. To understand the mechanism responsible for inhibition of IL-4 production in CLL cells treated with BTKis, we stimulated CLL cells through IgM, Toll-like receptor and CD40L, finding that only anti-IgM stimulation significantly increased IL-4 production and p-STAT6 induction. We then explored the function of IL-4. IL-4 enhanced CLL B cell survival in vitro and this action was blocked by all 3 BTKis. Moreover, adhesion of CLL B cells to smIL-4R expressing stromal cells was decreased by IL-4 and IL-4R neutralizing antibodies, especially in M-CLL cases. In in vivo studies transferring autologous T cells and CLL PBMCs into alymphoid mice, we found less CLL B cells in mouse spleens post ibrutinib than zanubrutinib or acalabrutinib treatment. This might be due to the suppressed Th2 cells found only in ibrutinib, while IL-4 producing B cells were reduced in all 3 BTKi treated mice. These results support the idea that IL-4 promotes CLL B cell adhesion and growth in tissues. Finally, we investigated the IL-4/IL-4R axis in ibrutinib-resistant patients. Although IL-4 producing T cells remain reduced during the sensitive and resistant phases, CLL B cell production of IL-4 and expression of and signaling through smIL-4R returned when patients developed ibrutinib-resistance. When comparing paired ibrutinib-sensitive and -resistant CLL B cells collected from 3 patients in a xenograft model that requires T cell help, we found ibrutinib-resistant CLL B cells grew in vivo with only minimal (~15%) numbers of autologous T cells compared to B cells collected from ibrutinib-sensitive phase; this suggested a reduced requirement for T-cell help for growth of ibrutinib-resistant CLL cells. In summary, we found IL-4 is a key survival factor in the CLL microenvironment that also improves leukemia cell adhesion to stromal cells expressing smIL-4R. IL-4 production and signaling can be stimulated in CLL B cells through the B-cell receptor, and are consistently blocked by BTKis. Moreover, the recovered ability of ibrutinib-resistant CLL B cells to produce and respond to IL-4 leads to disease progression, suggesting blocking the IL-4/IL-4R axis is a potential treatment for ibrutinib-resistant CLL patients. Disclosures Chen: Pharmacyclics: Research Funding; Beigene: Research Funding; Verastem: Research Funding; ArgenX: Research Funding. Tam:Abbvie, Janssen: Research Funding; Abbvie, Janssen, Beigene, Roche, Novartis: Honoraria. Ramsay:Celgene Corporation: Research Funding; Roche Glycart AG: Research Funding. Kolitz:Boeringer-Ingelheim: Research Funding; Roche: Research Funding; Astellas: Research Funding. Zhou:BeiGene: Employment. Barrientos:Genentech: Consultancy; Gilead: Consultancy; Janssen: Consultancy; Abbvie: Consultancy, Research Funding; Pharmacyclics: Consultancy, Research Funding. Rai:Pharmacyctics: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Cellectis: Membership on an entity's Board of Directors or advisory committees; Genentech/Roche: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1848-1848
Author(s):  
Rukhsana Aslam ◽  
Jacqueline C Barrientos ◽  
Gerardo Ferrer ◽  
Pui Yan Chiu ◽  
Kanti R Rai ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in Western countries. Despite significant clinical and molecular advances, CLL remains an incurable disease. In CLL there is ongoing communication between leukemic B cells and non-leukemic cells in the tissue microenvironment. Idelalisib, a PI3Kδ inhibitor, is efficacious in CLL although side effects like inflammatory reactions in different tissues (e.g., colitis, transaminitis and pneumonitis) and progression of disease can lead to discontinuation of the drug. We previously presented an intriguing finding that a cohort of patients who discontinued idelalisib therapy due to colitis had extended survival compared to other patients who discontinued drug but did not have colitis. Of note, the colon tissues from patients with ulcerative colitis (UC) often contain elevated levels of Th17 cells and decreased levels of Treg (Foxp3+) cells. Moreover, Th17 cells from humans and mice have been shown to promote autoimmune B-cell maturation. In this regard, we have previously published that circulating Th17 levels are elevated in CLL patients and Th17 numbers correlate with extended survival. For these reasons, we have now quantified the numbers of Th17 and Treg cells in the blood and colon tissues of a cohort of CLL patients with drug-associated colitis and extended survival and have investigated the effects of in vitro exposure to idelalisib on Th17 generation. Circulating Th17A levels were quantified in a cohort of patients (n=11) before starting idelalisib-treatment and at the time the drug was discontinued due to colitis by flow cytometric analysis of intracellular IL-17A in CD4+ T cells. In addition, colon tissues from those CLL patients who developed colitis during idelalisib treatment taken at the time of drug discontinuation and patients with UC were examined to quantify the infiltration of T (CD3+) cells, Th17 (IL17A+) cells and Treg (Foxp3+) cells by immunohistochemistry (IHC). As negative control tissues (CT) for these studies we used colectomy samples from patients with inactive diverticulosis. FACS analysis of peripheral blood mononuclear cells from the CLL patients treated with idelalisib and having extended survival showed significantly higher circulating Th17A levels (P < 0.01) at the time of drug discontinuation compared to pre-treatment levels. In addition, IHC analyses on tissues from a subset of these same patients indicated that the ratio of % IL-17A+ to CD3+ cells was significantly higher in CLL than in CT (P = 0.0002). It was also significantly higher in CLL than UC (P = 0.001), even though the average number of CD3+ cells in UC was higher than in CLL (P = 0.0001). We also determined the ratio of % FoxP3+ to CD3+ cells in the colon tissues of 12 CT, 16 UC and 6 CLL patients from the cohort studied above. This revealed the average percentage of FoxP3+ cells within the total number of infiltrating T cells was significantly higher in CLL than CT (P = <0.0001), but not significantly different from UC patients (P = 0.90). When analyzing solely the CLL samples, there was a reciprocal relationship between Th17A+ cells and FoxP3+ cells, with the former being higher and the latter lower. To examine the effect of idelalisib on Th17-cell generation, naïve CD4+ CLL T cells from 6 patients (3 M-CLL + 3 U-CLL) were activated in vitro by anti-CD3/28 ligation plus IL-2 in the presence or absence of idelalisib. After 7 days, T helper subset profiling was performed by intracellular cytokine staining. Significantly higher percentages of Th17A cells and significantly lower percentages of Th1 cells (IFNg+) (P= 0.006) were found in cultures containing idelalisib. The percentages of Tregs were unchanged in the same cultures. These findings suggest that the higher numbers of Th17s in blood and tissue of patients after idelalisib treatment may reflect the action of idelalisib on Th17 generation. In conclusion, CLL patients who discontinued idelalisib due to colitis and yet had extended survival have increased circulating and tissue-resident Th17 cells and decreased levels of Treg cells. These findings suggest that an immune imbalance between Th17 and Treg cell numbers and function promotes colitis and at the same time favors improved clinical outcome. This is consistent with the known action of Th17 cells enhancing autoimmune B-cell responses. Disclosures Barrientos: Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pharmacyclics/AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Rai:Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Cellectis: Membership on an entity's Board of Directors or advisory committees; Roche/Genentech: Membership on an entity's Board of Directors or advisory committees. Chiorazzi:Janssen, Inc: Consultancy; AR Pharma: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document