scholarly journals CEBPA Gene Mutations Interfere with Expressions of NKG2D Ligands Ulbps in AML Cells and Modulate Their Susceptibility to NK-Mediated Lysis

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1257-1257
Author(s):  
Meng Liu ◽  
Limengmeng Wang ◽  
Huafang Wang ◽  
Shan Fu ◽  
He Huang ◽  
...  

Introduction: CEBPA gene encodes CCAAT/enhancer-binding protein-alpha (C/EBPα), a crucial granulocytic differentiation factor and tumor suppressor in hematologic and many non-hematologic malignancies. We previously reported a donor-derived relapse of AML patient after allogeneic hematopoietic stem cell transplantation with multiple mutations in CEBPA gene: a N-terminal frameshift mutation (247dupC causing overproduction of truncated 30-KDa isoform, lacking the TAD1 domain, p30), a N-terminal germ-line mutation (584_589dup disrupting the TAD2 domain of protein, NM2), and a C-terminal mutation (914_916dup disrupting the bZIP domain, CM) (Blood 2011; 117: 5257-5260). Although studies from multiple laboratories have contributed immensely to our understanding that how different CEBPA mutations disturb C/EBPα functions including granulopoiesis and leukemic transformation in AML, whether C/EBPα might regulate immunosurveillance remains unknown. Methods: AML cell line cells infected with lentivirus to over-express of wild type C/EBPα as well as 3 types of C/EBPα mutants were co-cultured with NK92MI cells and detected cytotoxic lysis through FCM. NK92MI cells were stained with CD107a to detect degranulation.We performed gene expression microarray profiling analysis in AML cell line cells with over-expression of wild type C/EBPα and mutants . Flag tagged wide type C/EBPα was over-expressed in 293T cells and ChIP with anti-Flag antibody followed by sequencing assay was performed to explore candidate gene binding sites of C/EBPα. Finally, independent ChIP-qPCR of candidate sequences were performed to further verify the transcription factor binding sites of C/EBPα. Results: ULBPs expressed on the surface of tumor or infected cells are important ligands of NK cell receptor NKG2D. Our gene expression microarray profiling analysis showed that wild type C/EBPα could up-regulate the expression of ULBP2/5/6 in AML cell line cells. Consistent with the results of gene expression microarray profiling analysis, over-expression of wild type C/EBPα and a N-terminal germ-line mutant (NM2) can up-regulate ULBP2/5/6 expression in NB4 cells, whose endogenous expression of ULBPs was low. Meanwhile, the sensitivities of NB4 cells to the cytotoxicity of NK92MI cells were also increased by over-expression of wide type C/EBPα and NM2 mutant. In contrast, leukemia-associated somatic mutations, C/EBPα p30 and C-terminal mutant (CM), were disabled to up-regulate ULBPs expression. In dual-luciferase reporter assay, the ratio of level of firefly luciferase and renilla luciferase significantly increased when co-transduced report plasmid with wide type C/EBPα expressing plasmid compared with vector control, indicating that C/EBPα could up-regulate the transcription of ULBP2 as a transcription factor. Through ChIP-seq assay we identified 12 peaks nearby ULBP genes in chromosome 6. We further performed ChIP-qPCR to target the sequences acting as enhancers of ULBP genes, which located +7kb upstream of transcription start site of ULBP2 gene, +11kb upstream of ULBP5 gene, -9kb downstream of ULBP6 gene and -40kb downstream of ULBP1 gene. Wide type C/EBPα showed higher binding affinity to the ULBP2/5 enhancers with more than 50 folds' enrichment and to the ULBP6/1 enhancers 9 folds' enrichment compared with IgG control. The N-terminal germ-line mutant (NM2) conserved part of the binding affinity, but the enrich fold was lower than wide type. As expected, leukemia-associated C-terminal mutant (CM) totally lost its binding ability to both sequences due to the damage of DNA binding domain. Althoughleukemia-associated truncated 30-KDa isoform partly conserved its binding ability to these DNA sequences, the mutant lost the function of regulating ULBPs expression. Conclusions: C/EBPα played an important role in innate immunosurveillance of AML. C/EBPα could bind to the promoter and potential enhancers of ULBP genes as a transcription factor, up-regulate expression of ULBPs and eventually induce AML cells to be recognized and killed by NK cells. Mutations in TAD2 domain did not affect this regulation function, while mutations in TAD1 and bZIP domain lost the specific ability. Leukemia cells with N-terminal frameshift mutations (p30), or C-terminal mutations could escape from surveillance of NK cells and may play pivotal roles in leukemia relapse. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


1991 ◽  
Vol 11 (7) ◽  
pp. 3676-3681
Author(s):  
W M Yang ◽  
W Gahl ◽  
D Hamer

The induction of Saccharomyces cerevisiae metallothionein gene transcription by Cu and Ag is mediated by the ACE1 transcription factor. In an effort to detect additional stimuli and factors that regulate metallothionein gene transcription, we isolated a Cu-resistant suppressor mutant of an ACE1 deletion strain. Even in the absence of metals, the suppressor mutant exhibited high basal levels of metallothionein gene transcription that required upstream promoter sequences. The suppressor gene was cloned, and its predicted product was shown to correspond to yeast heat shock transcription factor with a single-amino-acid substitution in the DNA-binding domain. The mutant heat shock factor bound strongly to metallothionein gene upstream promoter sequences, whereas wild-type heat shock factor interacted weakly with the same region. Heat treatment led to a slight but reproducible induction of metallothionein gene expression in both wild-type and suppressor strains, and Cd induced transcription in the mutant strain. These studies provide evidence for multiple pathways of metallothionein gene transcriptional regulation in S. cerevisiae.


Sign in / Sign up

Export Citation Format

Share Document