scholarly journals Combination Therapy of Allogeneic HSCT and In Vivo Activated iNKT Cells Prevents Acute Gvhd While Augmenting GVL Effect

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4439-4439
Author(s):  
Samuel Zeng ◽  
Qingxiao Song ◽  
Shanshan Tang ◽  
Xi Wang ◽  
Yuchen Wang ◽  
...  

Adult acute lymphoblastic leukemia (ALL) is a highly aggressive cancer with poor clinical prognosis and high relapse rate. Whereas allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for highly differentiated hematologic malignancies, allo-HSCT provides only limited benefits for treating ALL with relapses frequent. Additionally, the development of graft-versus-host-disease (GVHD) remains a major concern for allo-HSCT recipients. Invariant natural killer T (iNKT) cells are a subset of T lymphocytes that express both a semi-invariant T cell receptor and natural killer cell markers. They recognize lipid antigens presented by non-polymorphic CD1d and have been reported to directly target CD1d+ solid tumors. Many B-ALL, including the P210 B-ALL cell line, are also CD1d+. Clinically, increased iNKT cells have simultaneously been correlated with reduced risk of developing acute GVHD and lower rates of malignant relapse. Because iNKT cells comprise only a tiny fraction of total T cells, we established a protocol to insert an iNKT TCR into murine HSC, thereby generating retrogenic mice with 5-10x expansion of iNKT cells in spleen and liver. Although engineered T cell therapy, including CD19-CART therapy, has proven to be effective in inducing remission in many B-ALL patients, when used as a monotherapy, relapse remains a major obstacle. We therefore tested whether a combination of allo-HSCT and iNKT cell therapy could robustly prevent GVHD while preserving graft-versus-leukemia effects (GVL). To test whether the addition of iNKT cells into allo-graft was capable of preventing acute GVHD (aGVHD), lethally irradiated BALB/C were given B6 bone marrow (2.5 x 106) and whole splenocytes (2.5 x 106, 5 x 106, or 10 x 106) from either B6 or retrogenic B6-iNKT mice. Mice that received 5 x 106 B6 splenocytes developed lethal aGVHD and became moribund by Day 10. Half of the mice that received 2.5 x 106 B6 splenocytes develop lethal aGVHD and died by Day 20. In contrast, only half of the mice that received 5 x 106 or 10 x 106 B6-iNKT splenocytes developed lethal aGVHD by Day 20, and all recipients of 2.5 x 106 B6 splenocytes remained alive by Day 20, suggesting the addition of iNKT cells into allograft may reduce the severity of aGVHD. To test whether adding iNKT cells to allograft could enhance GVL without causing GVHD, BALB/C mice with pre-established P210 B-ALL leukemia were given allo-HSCT with or without iNKT cell addition. Initially, our data showed freshly isolated iNKT cells were rapidly cleared following transplantation. We therefore included lethally irradiated P210 loaded with α-Galactosylceramide (α-Galcer) as adjuvant, and were able to see robust expansion of iNKT cells in vitro and in vivo (>20% vs <1% in WT in BM and Liver). Additionally, we found that HSCT recipients that also received iNKT cells were able to fully clear bone marrow residing B-ALL cells by Day8, compared to less than half in control, suggesting an important role of iNKT cells for targeting bone marrow residing B-ALL cells to prevent relapse. Taken together, combination therapy of allogeneic HSCT with infusion of donor-type iNKT cells activated via irradiated α-Galcer-loaded host-type ALL represent a novel approach for preventing GVHD and augmenting GVL effect against ALL. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 346-346
Author(s):  
Marie T Rubio ◽  
Lucia Teixeira ◽  
Pierre Milpied ◽  
Emmanuel Bachy ◽  
Felipe Suarez ◽  
...  

Abstract Abstract 346 Introduction: Invariant Natural Killer T (iNKT) cells express a highly restricted T cell receptor (TCR) repertoire composed of a single invariant Va14Ja18 chain in mice and a Va24Ja18 chain in humans. In contrast to their conventional counterpart, iNKT cells recognize CD1d-bound glycolipids rather than peptides. iNKT cells have elicited a lively interest in the last years because of their implication in several immune responses including experimental graft-versus-host-disease (GVHD). In this study, we addressed the question whether human iNKT cells could be associated with the outcome of allogeneic haematopoietic stem cell transplantation (HSCT). Materials and methods: Forty-seven patients allografted for diverse hematological malignancies in our institution entered prospectively the study. We sequentially analyzed the reconstitution of peripheral blood CD1d tetramer + iNKT, CD56+ NK, and CD4+, CD8+, CD4+CD25high T cells for 90 days after allogeneic HSCT by flow cytometry. Results were correlated to the clinical evolution of allogeneic HSCT. Results: We observed two groups of patients according to their iNKT/106 T cell ratios on days 30, 60 and 90 after HSCT. Patients with at least one point above the normal ratio of 1000 iNKT/106 T cells were considered in the iNKT high group (n=17), while those with a poor reconstitution, defined by all points below that threshold, were analyzed in the iNKT low group (n=30). iNKT reconstitution was the only significant difference in terms of immune reconstitution between the two groups since reconstitution of T CD4+, CD8+, or CD4+CD25high and NK cells was similar at all time points in both groups. Chimerism, analyzed by PCR amplification of short tandem repeat markers, showed that in all cases iNKT displayed a 100% donor origin. Pre-transplant characteristics of patients were similar between the two groups except for the conditioning regimen and the source of stem cells. Patients in the iNKT high group had more often received a reduced-intensity conditioning (80.5% versus 46.7%, p=0.004) and peripheral blood stem cells (88.5% versus 53.6%, p=0.015). Occurrence and severity of acute GVHD was significantly reduced in the iNKT high group (23.5 % grade I-II and 0% grade III-IV) compared to the iNKT low group (66.7 % grade I-II and 26.6% grade III-IV), (p<0.001), while development of chronic GVHD was not significantly affected by the iNKT reconstitution (29.4 % in the iNKT high group versus 48.2% in the iNKT low group), (p=0.57). This lead to a significantly reduced toxicity related mortality (TRM) in the iNKT high group (8.2% versus 36.9% in the iNKT low group at 2 years), (p=0.028) without an increased risk of relapse (17.6% in the iNKT high group versus 16.7% in the iNKT low group) at 2 years, (p=0.877). Median follow up was 28.7 months. Overall survival was improved in the iNKT high group (86.3% versus 58.0% in the iNKT low group, at 2 years), (p=0.056) in a landmark analysis at day 90. These results prompted us to further analyze whether iNKT cell frequency could be a predictive marker of acute GVHD. In a subgroup analysis performed on patients with availabel data on day 14 post-HSCT (n=23), the risk of developing acute GVHD was significantly higher in patients with a iNKT/106 T cell ratio below 500 (92 % of aGVHD) in comparison to those with a ratio above 500 (40 % of aGVHD), (p=0.0028). Conclusion: Our data suggest that donor-derived iNKT cell reconstitution after allogeneic HSCT may represent a predictive factor of acute GVHD and a prognostic factor of transplant outcome. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (14) ◽  
pp. 5085
Author(s):  
Peng Guan ◽  
Robert Schaub ◽  
Kim E. Nichols ◽  
Rupali Das

Invariant natural killer T (iNKT) cells are innate-like T lymphocytes characterized by the expression of an invariant T cell receptor (iTCR) that recognizes glycolipid antigens presented by the MHC I-like CD1d molecule. Following antigenic stimulation, iNKT cells rapidly produce large amounts of cytokines that can trans-activate dendritic cells (DC) and promote the anti-tumor functions of cytotoxic lymphocytes, such as natural killer (NK) and CD8 T cells. Additionally, iNKT cells can mediate robust and direct cytotoxicity against CD1d+ tumor targets. However, many tumors down-regulate CD1d and evade iNKT cell attack. To circumvent this critical barrier to iNKT cell anti-tumor activity, a novel monoclonal antibody (mAb), NKT14 has been recently developed. This agonistic antibody binds directly and specifically to the iTCR of murine iNKT cells. In the current study, we demonstrate that NKT14m mediates robust activation, cytokine production and degranulation of murine iNKT cells, in vitro. Consistently, NKT14m also promoted iNKT cell activation and immunomodulatory functions, in vivo. Finally, administration of NKT14m with low dose interleukin (IL)-12 further augmented iNKT cell IFN-γ production in vivo, and this combination conferred superior suppression of tumor cell growth compared to NKT14m or IL-12 alone. Together, these data demonstrate that a combination treatment consisting of low dose IL-12 and iTCR-specific mAb may be an attractive alternative to activate iNKT cell anti-tumor functions.


2021 ◽  
Vol 118 (13) ◽  
pp. e2021385118
Author(s):  
Xiufang Weng ◽  
Amrendra Kumar ◽  
Liang Cao ◽  
Ying He ◽  
Eva Morgun ◽  
...  

Conventional T cell fate and function are determined by coordination between cellular signaling and mitochondrial metabolism. Invariant natural killer T (iNKT) cells are an important subset of “innate-like” T cells that exist in a preactivated effector state, and their dependence on mitochondrial metabolism has not been previously defined genetically or in vivo. Here, we show that mature iNKT cells have reduced mitochondrial respiratory reserve and iNKT cell development was highly sensitive to perturbation of mitochondrial function. Mice with T cell-specific ablation of Rieske iron-sulfur protein (RISP; T-Uqcrfs1−/−), an essential subunit of mitochondrial complex III, had a dramatic reduction of iNKT cells in the thymus and periphery, but no significant perturbation on the development of conventional T cells. The impaired development observed in T-Uqcrfs1−/− mice stems from a cell-autonomous defect in iNKT cells, resulting in a differentiation block at the early stages of iNKT cell development. Residual iNKT cells in T-Uqcrfs1−/− mice displayed increased apoptosis but retained the ability to proliferate in vivo, suggesting that their bioenergetic and biosynthetic demands were not compromised. However, they exhibited reduced expression of activation markers, decreased T cell receptor (TCR) signaling and impaired responses to TCR and interleukin-15 stimulation. Furthermore, knocking down RISP in mature iNKT cells diminished their cytokine production, correlating with reduced NFATc2 activity. Collectively, our data provide evidence for a critical role of mitochondrial metabolism in iNKT cell development and activation outside of its traditional role in supporting cellular bioenergetic demands.


2019 ◽  
Vol 3 (5) ◽  
pp. 813-824 ◽  
Author(s):  
Rupali Das ◽  
Peng Guan ◽  
Susan J. Wiener ◽  
Nishant P. Patel ◽  
Trevor G. Gohl ◽  
...  

Abstract Invariant natural killer T (iNKT) cells comprise a unique lineage of CD1d-restricted lipid-reactive T lymphocytes that potently kill tumor cells and exhibit robust immunostimulatory functions. Optimal tumor-directed iNKT cell responses often require expression of the antigen-presenting molecule CD1d on tumors; however, many tumor cells downregulate CD1d and thus evade iNKT cell recognition. We generated a soluble bispecific fusion protein designed to direct iNKT cells to the site of B-cell cancers in a tumor antigen-specific but CD1d-independent manner. This fusion protein is composed of a human CD1d molecule joined to a single chain antibody FV fragment specific for CD19, an antigen widely expressed on B-cell cancers. The CD1d-CD19 fusion protein binds specifically to CD19-expressing, but not CD19-negative cells. Once loaded with the iNKT cell lipid agonist α-galactosyl ceramide (αGC), the CD1d-CD19 fusion induces robust in vitro activation of and cytokine production by human iNKT cells. iNKT cells stimulated by the αGC-loaded CD1d-CD19 fusion also strongly transactivate T-, B-, and NK-cell responses and promote dendritic cell maturation. Importantly, the αGC-loaded fusion induces robust lysis of CD19+CD1d− Epstein-Barr virus immortalized human B-lymphoblastoid cell lines that are otherwise resistant to iNKT cell killing. Consistent with these findings; administration of the αGC-loaded fusion protein controlled the growth of CD19+CD1d− tumors in vivo, suggesting that it can “link” iNKT cells and CD19+CD1d− targets in a therapeutically beneficial manner. Taken together, these preclinical studies demonstrate that this B cell–directed fusion protein can be used to effectively induce iNKT cell antitumor responses in vitro and in vivo.


Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 5030-5036 ◽  
Author(s):  
Aristeidis Chaidos ◽  
Scott Patterson ◽  
Richard Szydlo ◽  
Mohammed Suhail Chaudhry ◽  
Francesco Dazzi ◽  
...  

Abstract Invariant natural killer T (iNKT) cells are powerful immunomodulatory cells that in mice regulate a variety of immune responses, including acute GVHD (aGVHD). However, their clinical relevance and in particular their role in clinical aGVHD are not known. We studied whether peripheral blood stem cell (PBSC) graft iNKT-cell dose affects on the occurrence of clinically significant grade II-IV aGVHD in patients (n = 57) undergoing sibling, HLA-identical allogeneic HSCT. In multivariate analysis, CD4− iNKT-cell dose was the only graft parameter to predict clinically significant aGVHD. The cumulative incidence of grade II-IV aGVHD in patients receiving CD4− iNKT-cell doses above and below the median were 24.2% and 71.4%, respectively (P = .0008); low CD4− iNKT-cell dose was associated with a relative risk of grade II-IV aGVHD of 4.27 (P = .0023; 95% CI, 1.68-10.85). Consistent with a role of iNKT cells in regulating aGVHD, in mixed lymphocyte reaction assays, CD4− iNKT cells effectively suppressed T-cell proliferation and IFN-γ secretion in a contact-dependent manner. In conclusion, higher doses of CD4− iNKT cells in PBSC grafts are associated with protection from aGVHD. This effect could be harnessed for prevention of aGVHD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaori Endo-Umeda ◽  
Hiroyuki Nakashima ◽  
Shigeyuki Uno ◽  
Shota Toyoshima ◽  
Naoki Umeda ◽  
...  

AbstractThe nuclear receptors liver X receptor α (LXRα) and LXRβ are lipid sensors that regulate lipid metabolism and immunity. Natural killer T (NKT) cells, a T cell subset expressing surface markers of both natural killer cells and T lymphocytes and involved in antitumor immunity, are another abundant immune cell type in the liver. The potential function of the metabolic regulators LXRα/β in hepatic NKT cells remains unknown. In this study, we examined the role of LXRα and LXRβ in NKT cells using mice deficient for LXRα and/or LXRβ, and found that hepatic invariant NKT (iNKT) cells are drastically decreased in LXRα/β-KO mice. Cytokine production stimulated by the iNKT cell activator α-galactosylceramide was impaired in LXRα/β-KO hepatic mononuclear cells and in LXRα/β-KO mice. iNKT cell-mediated antitumor effect was also disturbed in LXRα/β-KO mice. LXRα/β-KO mice transplanted with wild-type bone marrow showed decreased iNKT cells in the liver and spleen. The thymus of LXRα/β-KO mice showed a decreased population of iNKT cells. In conclusion, LXRα and LXRβ are essential for NKT cell-mediated immunity, such as cytokine production and hepatic antitumor activity, and are involved in NKT cell development in immune tissues, such as the thymus.


Blood ◽  
2021 ◽  
Author(s):  
Kristina Maas-Bauer ◽  
Juliane K. Lohmeyer ◽  
Toshihito Hirai ◽  
Teresa Lopes Ramos ◽  
Furqan Muhammad Fazal ◽  
...  

Invariant Natural Killer T (iNKT) cells are a T cell subset with potent immunomodulatory properties. Experimental evidence in mice and observational studies in humans indicate that iNKT cells have antitumor potential as well as the ability to suppress acute and chronic Graft-versus-Host-Disease (GvHD). Murine iNKT cells differentiate during thymic development into iNKT1, iNKT2 and iNKT17 sublineages, which differ transcriptomically and epigenomically, and have subset-specific developmental requirements. Whether distinct iNKT sublineages also differ in their antitumor effect and their ability to suppress GvHD is currently unknown. In this work, we generated highly purified murine iNKT-sublineages, characterized their transcriptomic and epigenomic landscape, and assessed specific functions. We demonstrate that iNKT2 and iNKT17, but not iNKT1 cells, efficiently suppress T cell activation in vitro and mitigate murine acute GvHD in vivo. Conversely, we show that iNKT1 cells display the highest antitumor activity against murine B-cell lymphoma cells both in vitro and in vivo. Thus, we demonstrate for the first time that iNKT sublineages have distinct and different functions, with iNKT1 cells having the highest antitumor activity and iNKT2 and iNKT17 cells having immune-regulatory properties. These results have important implications for the translation of iNKT cell therapies to the clinic for cancer immunotherapy as well as for GvHD prevention and treatment.


Blood ◽  
2009 ◽  
Vol 113 (18) ◽  
pp. 4262-4272 ◽  
Author(s):  
Shin-ichiro Fujii ◽  
Akira Goto ◽  
Kanako Shimizu

Abstract The maturation of dendritic cells (DCs) in situ by danger signals plays a central role in linking innate and adaptive immunity. We previously demonstrated that the activation of invariant natural killer T (iNKT) cells by administration of α-galactosylceramide (α-GalCer)–loaded tumor cells can act as a cellular adjuvant through the DC maturation. In the current study, we used allogeneic fibroblasts loaded with α-GalCer and transfected with antigen-encoding mRNA, thus combining the adjuvant effects of iNKT-cell activation with delivery of antigen to DCs in vivo. We found that these cells produce antigen protein and activate NK and iNKT cells. When injected into major histocompatibility complex (MHC)–mismatched mice, they elicited antigen-specific T-cell responses and provided tumor protection, suggesting that these immune responses depend on host DCs. In addition, antigen-expressing fibroblasts loaded with α-GalCer lead to a more potent T-cell response than those expressing NK cell ligands. Thus, glycolipid-loaded, mRNA-transfected allogeneic fibroblasts act as cellular vectors to provide iNKT-cell activation, leading to DC maturation and T-cell immunity. By harnessing the innate immune system and generating an adaptive immune response to a variety of antigens, this unique tool could prove clinically beneficial in the development of immunotherapies against malignant and infectious diseases.


Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 842-851 ◽  
Author(s):  
BR Blazar ◽  
PA Taylor ◽  
S Smith ◽  
DA Vallera

Studies in mice and humans have indicated that the predominance of interleukin-4 (IL-4)- and IL-10-producing T-helper type 2 (Th2) cells may serve to downregulate acute graft-versus-host disease (GVHD) reactions, whereas IL-2-producing Th1 cells have been implicated in facilitating acute GVHD. We explored the possibility that the in vivo infusion of IL-10 would inhibit acute GVHD induced by fully allogeneic donor grafts. Unexpectedly, IL-10 infusions resulted in a dose- dependent increase in GVHD-induced mortality. The acceleration of lethal GVHD by IL-10 occurred in irradiated recipients of T-cell- depleted bone marrow (BM) plus 5, 15, or 25 x 10(6) splenocytes but did not influence the post-BM transplantation (post-BMT) survival rate of recipients of BM without splenocytes, suggesting that the IL-10 effects were not due to toxicity. Antimurine IL-10-neutralizing monoclonal antibody injections, administered to diminish endogenous IL-10, reduced GVHD-associated mortality and improved the clinical appearance of the recipients. For BM graft rejection studies, IL-10 was infused into sublethally irradiated recipients of anti-Thy 1.2 + C′ T-cell-depleted, fully allogeneic BM grafts. In a short-term (day 7) in vivo assay, IL- 10 infusions significantly inhibited allogeneic (but not syngeneic) BM proliferation in vivo, indicative of increased graft rejection. In long- term chimerism experiments, IL-10 infusions caused a significant increase in early post-BMT mortality caused by a profound anemia typically associated with graft rejection and aplasia. A slightly higher irradiation dose (650 cGy v 600 cGy) eliminated the anemia but did not reverse the graft rejection process associated with IL-10 administration. We conclude that the in vivo infusion of exogenous IL- 10 in recipients of fully allogeneic donor grafts results in accelerated GVHD and graft rejection in the strain combinations tested to date.


2015 ◽  
Vol 112 (5) ◽  
pp. 1523-1528 ◽  
Author(s):  
Drake J. Smith ◽  
Siyuan Liu ◽  
Sunjong Ji ◽  
Bo Li ◽  
Jami McLaughlin ◽  
...  

Invariant natural killer T (iNKT) cells comprise a small population of αβ T lymphocytes. They bridge the innate and adaptive immune systems and mediate strong and rapid responses to many diseases, including cancer, infections, allergies, and autoimmunity. However, the study of iNKT cell biology and the therapeutic applications of these cells are greatly limited by their small numbers in vivo (∼0.01–1% in mouse and human blood). Here, we report a new method to generate large numbers of iNKT cells in mice through T-cell receptor (TCR) gene engineering of hematopoietic stem cells (HSCs). We showed that iNKT TCR-engineered HSCs could generate a clonal population of iNKT cells. These HSC-engineered iNKT cells displayed the typical iNKT cell phenotype and functionality. They followed a two-stage developmental path, first in thymus and then in the periphery, resembling that of endogenous iNKT cells. When tested in a mouse melanoma lung metastasis model, the HSC-engineered iNKT cells effectively protected mice from tumor metastasis. This method provides a powerful and high-throughput tool to investigate the in vivo development and functionality of clonal iNKT cells in mice. More importantly, this method takes advantage of the self-renewal and longevity of HSCs to generate a long-term supply of engineered iNKT cells, thus opening up a new avenue for iNKT cell-based immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document