scholarly journals Reversible DNA Hypermethylation of the Interleukin-15 (IL-15) Promoter Induces IL-15 Expression, Drives the Pathogenesis of T-Cell Large Granular Lymphocytic Leukemia and Provides a Potential Therapeutic Approach Using 5-Azacitidine

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3776-3776
Author(s):  
Jonathan E Brammer ◽  
Amy E Boles ◽  
Anthony Mansour ◽  
Aharon G. Freud ◽  
Monique Mathé-Allainmat ◽  
...  

Background and Rationale: T-cell large granular lymphocytic leukemia (T-LGLL) is an incurable clonal proliferation of CD8+ memory T-cells that leads to profound neutropenia and anemia with limited treatment options. The primary driver of T-LGLL is overexpression of interleukin-15 (IL-15), a gamma-chain cytokine. Previously, we have demonstrated that mice overexpressing IL-15 develop DNA hypermethylation and chromosomal instability that leads to the spontaneous development of LGLL (Mishra et al. Cancer Cell 2012). Further, the IL-15 promoter is known to be hypermethylated in cutaneous T-cell lymphoma (CTCL), another IL-15 driven malignancy (Mishra et al. Cancer Discovery 2016). In CTCL patients, the counterintuitive increase in IL-15 mRNA was due to hypermethylation of its promoter at the repressor binding sequences in the IL-15 gene. However, the methylation status of the IL-15 promoter in T-LGLL patients remains unknown. Concept: We hypothesize that the IL-15 promoter is hypermethylated in patients with T-LGLL, leading to aberrant overexpression of IL-15 and that this hypermethylation is a critical event in the leukemogenesis of T-LGLL. If true, demethylation of the IL-15 promoter with a resultant decrease in IL-15 transcripts should lead to apoptosis of T-LGLL cells. Hypomethylation of the IL-15 promoter, therefore, may provide a novel therapeutic approach to inhibiting IL-15, the primary driver of T-LGLL. Results: CD3+/CD8+/CD5-/dim T-cells were purified from peripheral blood of LGLL patient (n=3) and normal donor (ND) (n=3) by flow cytometry sorting. We analyzed DNA methylation and gene expression profiling using reduced representation bisulfite and RNA sequencing. With bioinformatics analysis, we determined differential methylation (1-way ANOVA P= 0.0178) and expression (1-way ANOVA P =0.0059). These data sets revealed significant differential hypermethylation of gene promoters in leukemic samples, compared to controls (Figure 1A). Reduced representation bisulfite sequencing that can identify differentially methylated regions at single base-pair resolutions demonstrated an increase in DNA methylation of the IL-15 promoter in patient samples over controls. To determine the functional significance of this finding, we treated the MOTN-1 T-LGLL cell line in vitro with the hypomethylating agent, 5-azacytidine (5-aza) at concentrations of 0.5 uM, 1 uM, 2.5 uM, and 5 uM. At 24 and 48 hours, a marked decrease in the viability of T-LGLL cells was observed, from 100% to 49.50%, p=0.037; particularly at higher concentrations of 5-aza (100% to 27% +11.30%, p=0.0030). Next, we sought to determine whether 5-aza induced hypomethylation of the IL-15 promoter. IL-15 gene expression in MOTN-1 T-LGLL cells treated with 5-aza was measured in comparison to control treated MOTN-1 cells. A marked decrease in IL-15 expression was observed at all concentrations of 5-aza compared to control (Figure 1B, p=0.0001). These results confirm that 5-aza leads to decreased transcription of the IL-15 gene, possibly due to hypomethylation of the IL-15 promoter. Finally, to determine whether a decrease in IL-15 alone was the cause of increased apoptosis of T-LGLL cells, we exposed MOTN-1 cells to a novel IL-15 inhibitor, IBI-15, and compared cell viability against MOTN-1 cells exposed to an inactive control, IBI-40. Even more profound decrease in cell viability was observed utilizing IBI-15 that targets the binding of IL-15 to its receptor (Figure 1C). Together, these data suggest that hypermethylation of the IL-15 promoter is critical to the pathogenesis of T-LGLL, and that treatment with 5-aza is sufficient to induce hypomethylation of the IL-15 promoter, decrease IL-15 transcription, and induce apoptosis in T-LGLL cells. Conclusions: Hypermethylation of the IL-15 promoter, with subsequent increase in IL-15, is critical to the pathogenesis of T-LGLL. Inhibition of the IL-15 promoter hypermethylation by 5-aza leads to down-regulation of the IL-15 gene transcript, which is sufficient to induce apoptosis of T-LGLL cells. These data suggest that 5-aza induced hypomethylation may be a novel method to induce IL-15 inhibition and a potentially efficacious clinical strategy against T-LGLL. Disclosures Brammer: Bioniz Therapeutics, Inc.: Research Funding; Viracta Therapeutics, Inc.: Research Funding; Verastem, Inc: Research Funding. Porcu:Daiichi: Research Funding; BeiGene: Other: Scientific Board, Research Funding; Spectrum: Consultancy; Viracta: Honoraria, Other: Scientific Board, Research Funding; Innate Pharma: Honoraria, Other: Scientific Board, Research Funding; Kyowa: Honoraria, Other: Scientific Board, Research Funding; ADCT: Research Funding; Incyte: Research Funding. OffLabel Disclosure: IBI-15 IBI-40 IL-15 inhibitor

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4175-4175
Author(s):  
Tatsuro Watanabe ◽  
Hiroshi Ureshino ◽  
Yuki Kurahashi ◽  
Yuki Fukuda-Kurahashi ◽  
Satoshi Yamashita ◽  
...  

Abstract Aberrant DNA methylation profiles in various types of cancer have highlighted the importance of DNA methylation in human carcinogenesis and opened the prospect of targeting aberrant DNA methylation with demethylating agents as a therapy for cancer. Adult T-cell leukemia-lymphoma (ATL) is an aggressive hematological malignancy derived from CD4 (+) T-cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Although it has been estimated that 20 million people are infected with HTLV-1 worldwide, most HTLV-1 infected individuals have no symptoms and only 3-7% of HTLV-1 positive carriers develop ATL in their life time. HTLV-1 infected cells undergo multistep leukemogenesis and there are four clinical subtypes of ATL, smoldering type, chronic type, acute type, and lymphoma type. It takes several decades to acquire aggressive phenotypes through the accumulation of genetic and epigenetic abnormalities. In this study, we aimed to elucidate the contribution of aberrant DNA methylation to ATL leukemogenesis and the anti-ATL effects of DNA demethylating agents. Since the expression profiles of CADM1 and CD7 in CD4 (+) T-cells reflect ATL disease progression, fractions of HTLV-1 infected cells and normal T-cells were isolated from ATL patients, HTLV-1 carriers, and healthy volunteers using the expression statuses of CADM1 and CD7. Comprehensive genome-wide profiling of DNA methylation was performed by quantitative array-based methylation analysis at the single-CpG-site level using the Infinium HumanMethylation450 BeadChip array. Anti-ATL effects of four DNA demethylating agents were investigated in in vitro experiments using ATL-related cell lines and a xenograft mouse model. Unsupervised hierarchical clustering analysis was first conducted using the DNA methylation profiles of 20,000 CpG probes, which were randomly picked from 470,870 probes. Global DNA hypomethylation was detected in HTLV-1 infected cells at the asymptomatic carrier stage. To identify differentially methylated positions (DMPs) that specifically reflect ATL disease status, the DNA methylation profiles of a normal cell subpopulation were compared with those of a HTLV-1 infected subpopulation. We identified 12,025 hypermethylated and 33,581 hypomethylated DMPs that were specific to the HTLV-1 infected subpopulation. Importantly, the methylation profiles of hypermethylated DMPs, but not those of hypomethylated DMPs, were different between the aggressive and indolent types of ATL and could be used to distinguish them. Therefore, we next extracted and analyzed 1,207 hypermethylated CpG sites located in TSS200 CpG islands (CGIs) in hypermethylated DMPs, since TSS200 CGIs are widely recognized to regulate gene expression in a methylation dependent manner. We found the DNA methylation profiles of 1,207 probes tended to correlate with ATL disease status. Since regional DNA hypermethylation appears to be associated with ATL disease progression, we tested the anti-leukemia activities of two novel decitabine prodrugs, OR-21 and OR-12, and compared their efficacies with those of clinically available AZA and DAC. OR-21 and OR-12 showed enhanced oral bioavailability and sustained release of decitabine and decitabine 5'-monophosphate, respectively. In ATL-related T-cell lines cultured in the presence of each DNA demethylating compound, DAC and OR-21 significantly suppressed cell growth and decreased DNA methylation at LINE-1 repeat regions, which are used as a biomarker for the monitoring of global changes in DNA methylation. To establish a xenograft mouse model, cells of the HTLV-1-transformed T-cell line, MT-2, were inoculated into the subcutaneous tissue of immunodeficient Balb/c Rag-2-/- Jak3-/- mice, which lack mature T and B lymphocytes and NK cells. A visible tumor appeared 10 days after inoculation and DAC or OR-21 was injected intraperitoneally twice a week, because they were rapidly degraded in the stomach acidic environment and could not be administered orally. The AUC-guided dosing of OR21 (3.39mg/kg) suppressed tumor growth, which was comparable with that obtained with 1.25 mg/kg DAC, while OR21 showed less hematotoxicity than DAC. Disclosures Watanabe: OHARA Pharmaceutical Co., Ltd.: Research Funding. Ureshino:OHARA Pharmaceutical Co., Ltd.: Research Funding. Kurahashi:OHARA Pharmaceutical Co., Ltd.: Employment. Fukuda-Kurahashi:OHARA Pharmaceutical Co., Ltd.: Employment. Kimura:OHARA Pharmaceutical Co., Ltd.: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2517-2517
Author(s):  
Emily A Saunderson ◽  
Kevin Rouault-Pierre ◽  
John G. Gribben ◽  
Gabriella Ficz

Introduction The epigenome is significantly perturbed in hematological malignancies with global DNA hypomethylation and localized hypermethylation of gene promoter CpG islands. Whether specific gene promoter hypermethylation can contribute to the clonal expansion of hematopoietic stem and progenitor cells (HSPCs) in humans by affecting HSPC biology, independently of genetic mutations, has not previously been investigated due to the lack of appropriate tools. We show for the first time that it is possible to target de novo DNA methylation using CRISPR/Cas9 in human CD34+ cells isolated from cord blood (CB). DNA methylation targeted to key cell cycle control gene promoters, INK4b (p15) and ARF (p14), is permanently maintained after dCas9 3A3L degradation and inherited as cells differentiate; inhibiting gene expression and affecting the colony forming potential of CD34+ cells. This demonstrates that specific DNA hypermethylation events can permanently change HSPC biology and impact differentiation, potentially contributing to pre-malignant processes. Methods Human CD34+ HSPCs were isolated from human CB and maintained in liquid culture for 24 hours before nucleofection with mRNA encoding an adapted form of CRISPR/Cas9 which has no nuclease activity (dCas9) and is fused to the catalytic domain of DNA methyltransferase 3A (DNMT3A) and 3L (3A3L). The nucleofection cocktail contained dCas9 3A3L or dCas9 3A3L-mut (lacks methyltransferase activity) and 1 to 3 guide RNAs to target DNA methylation to combinations of the INK4a-ARF-INK4b locus. Cells were then seeded into methylcellulose for a primary colony forming assay (CFU). Colonies were scored after 14 days and cells were either harvested and pooled or individual colonies were picked for single-colony molecular analyses. The DNA was extracted and methylation at the INK4a-ARF-INK4b promoters was quantified using targeted bisulfite sequencing; target gene expression was measured using qPCR. The remaining cells from the primary CFU were re-plated a second (secondary CFU) and third (tertiary CFU) time and colonies were again scored after 14 days. Results and Conclusions Targeting DNA methylation to the INK4a-ARF-INK4b locus or INK4b individually in human CD34+ cells resulted in maintenance of hypermethylation at ARF and/or INK4b gene promoters in individual BFU-E (burst-forming unit-erythroid) and CFU-GM (granulocyte, macrophage) colonies as measured by single-colony targeted bisulfite sequencing after the primary CFU; causing heritable repression of INK4b gene expression in the differentiated cells. Some CpGs were up to 90% methylated, indicating that DNA methylation added at these gene promoters is highly stable as cells differentiate. Hypermethylation of ARF and INK4b was found in some colonies even after the tertiary CFU, demonstrating long-term maintenance of promoter hypermethylation. Unexpectedly, no DNA hypermethylation was detected at INK4a in differentiated cells, but whether this is the case for all subpopulations of HSPCs (i.e. HSCs or lymphoid progenitors) is under investigation. Hypermethylation of INK4b and ARF increased the colony forming potential of CD34+ cells in primary, secondary and tertiary CFUs, compared to the control. Conversely, methylation targeted to INK4b alone did not significantly affect the number of colonies in the first CFU, and decreased the number of colonies in the secondary CFU. This suggests a complex interplay between key cell cycle regulators ARF and INK4b in CD34+ cells and during differentiation which can be disrupted by DNA hypermethylation and gene repression. These findings demonstrate the novel insights we can gain by using CRISPR/Cas9 tools to target DNA methylation and these investigations will reveal how gene promoter hypermethylation can impact HSPC function. Furthermore, studying this locus may uncover an important role for DNA hypermethylation in the development of myeloid malignancies, since INK4b is frequently hypermethylated, but rarely mutated, in myeloid dysplastic/proliferative neoplasms and acute myeloid leukemia. Disclosures Gribben: Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5116-5116
Author(s):  
Jason A Dubovsky ◽  
John J. Powers ◽  
Daniel Wang ◽  
Eduardo M. Sotomayor ◽  
Javier Pinilla

Abstract Abstract 5116 Background Chronic lymphocytic leukemia (CLL) is a malignancy arising from immune cells (B-lymphocytes) endowed with intrinsic antigen-presenting capabilities. Such a function however is lost during malignant transformation and CLL cells are well known for their inability to process and present antigens to the T-cell arm of the immune system. Instead, malignant CLL cells elicit a vast array of immune regulatory mechanisms conducive to T-cell dysfunction and immunosupression. Recent evidence suggests that DNA methylation inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) can have lasting cancer-specific effects on the expression of highly immunogenic cancer-testis antigens (CTAs) as well as modulating costimulatory and major histocompatability molecule (MHC) surface expression. Methods To investigate the potential efficacy of a combined therapy of DNMTi (5-aza-2'-deoxycytidine) and HDACi (LAQ) in human CLL we performed a gene expression microarray profile and further confirmed the expression of CTAs. Furthermore we investigated phenotypic alterations due to changes in costimulatory molecules (CD40, 80, and 86), and MHC molecules (HLA-A, B, C, and HLA-DR) in both cell lines and primary cells from patients with CLL. To confirm that alterations in molecule surface expression correlated to more potent immune stimulation we characterized the formation of the immune-synapse between the CLL antigen presenting cell and healthy T-lymphocytes in treated and untreated samples using confocal microscopy and flow conjugation assay. To demonstrate functional significance we subjected treated and untreated CLL cell lines to mixed lymphocyte proliferation assays with CD4, CD8, and NK cell subsets. Results As expected we demonstrate by gene expression profile and RT-PCR that many highly immunogenic CTAs (SSX family, MAGE family, NY-ESO-1, GAGE-2 and NXF2) are significantly upregulated after treatment with an HDACi and DNMTi in combination. Interestingly, preliminary data showed interferon gamma mRNA upregulation. Consistent with this information, our data also indicates that a more proinflammatory signaling pathway is developed between the CLL B-cell and the T-lymphocyte after combination treatment demonstrated by upregulated surface expression of CD86, 80, 40, HLA-A,B,C, and HLA-DR as well as the formation of significantly more, robust, numerous, and organized actin-mediated immune-synapses, changes which were not duplicated using either drug alone. Functionally, only the combined HDACi/DNMTi treatment of CLL cells led to increased allogenic T and NK cell proliferation and cytotoxicity. Conclusions Taken together these data indicate that combined HDACi/DNMTi may benefit current antigen specific vaccine strategies for CLL by inducing the expression of a highly antigenic CTAs, increasing CLL costimulatory capacity, repairing immunological synapse, and functionally increasing the proinflammatory status of the CLL APC. Disclosures Pinilla: Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Research Funding; exelixis: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Hanyin Wang ◽  
Shulan Tian ◽  
Qing Zhao ◽  
Wendy Blumenschein ◽  
Jennifer H. Yearley ◽  
...  

Introduction: Richter's syndrome (RS) represents transformation of chronic lymphocytic leukemia (CLL) into a highly aggressive lymphoma with dismal prognosis. Transcriptomic alterations have been described in CLL but most studies focused on peripheral blood samples with minimal data on RS-involved tissue. Moreover, transcriptomic features of RS have not been well defined in the era of CLL novel therapies. In this study we investigated transcriptomic profiles of CLL/RS-involved nodal tissue using samples from a clinical trial cohort of refractory CLL and RS patients treated with Pembrolizumab (NCT02332980). Methods: Nodal samples from 9 RS and 4 CLL patients in MC1485 trial cohort were reviewed and classified as previously published (Ding et al, Blood 2017). All samples were collected prior to Pembrolizumab treatment. Targeted gene expression profiling of 789 immune-related genes were performed on FFPE nodal samples using Nanostring nCounter® Analysis System (NanoString Technologies, Seattle, WA). Differential expression analysis was performed using NanoStringDiff. Genes with 2 fold-change in expression with a false-discovery rate less than 5% were considered differentially expressed. Results: The details for the therapy history of this cohort were illustrated in Figure 1a. All patients exposed to prior ibrutinib before the tissue biopsy had developed clinical progression while receiving ibrutinib. Unsupervised hierarchical clustering using the 300 most variable genes in expression revealed two clusters: C1 and C2 (Figure 1b). C1 included 4 RS and 3 CLL treated with prior chemotherapy without prior ibrutinib, and 1 RS treated with prior ibrutinib. C2 included 1 CLL and 3 RS received prior ibrutinib, and 1 RS treated with chemotherapy. The segregation of gene expression profiles in samples was largely driven by recent exposure to ibrutinib. In C1 cluster (majority had no prior ibrutinb), RS and CLL samples were clearly separated into two subgroups (Figure 1b). In C2 cluster, CLL 8 treated with ibrutinib showed more similarity in gene expression to RS, than to other CLL samples treated with chemotherapy. In comparison of C2 to C1, we identified 71 differentially expressed genes, of which 34 genes were downregulated and 37 were upregulated in C2. Among the upregulated genes in C2 (majority had prior ibrutinib) are known immune modulating genes including LILRA6, FCGR3A, IL-10, CD163, CD14, IL-2RB (figure 1c). Downregulated genes in C2 are involved in B cell activation including CD40LG, CD22, CD79A, MS4A1 (CD20), and LTB, reflecting the expected biological effect of ibrutinib in reducing B cell activation. Among the 9 RS samples, we compared gene profiles between the two groups of RS with or without prior ibrutinib therapy. 38 downregulated genes and 10 upregulated genes were found in the 4 RS treated with ibrutinib in comparison with 5 RS treated with chemotherapy. The top upregulated genes in the ibrutinib-exposed group included PTHLH, S100A8, IGSF3, TERT, and PRKCB, while the downregulated genes in these samples included MS4A1, LTB and CD38 (figure 1d). In order to delineate the differences of RS vs CLL, we compared gene expression profiles between 5 RS samples and 3 CLL samples that were treated with only chemotherapy. RS samples showed significant upregulation of 129 genes and downregulation of 7 genes. Among the most significantly upregulated genes are multiple genes involved in monocyte and myeloid lineage regulation including TNFSF13, S100A9, FCN1, LGALS2, CD14, FCGR2A, SERPINA1, and LILRB3. Conclusion: Our study indicates that ibrutinib-resistant, RS-involved tissues are characterized by downregulation of genes in B cell activation, but with PRKCB and TERT upregulation. Furthermore, RS-involved nodal tissues display the increased expression of genes involved in myeloid/monocytic regulation in comparison with CLL-involved nodal tissues. These findings implicate that differential therapies for RS and CLL patients need to be adopted based on their prior therapy and gene expression signatures. Studies using large sample size will be needed to verify this hypothesis. Figure Disclosures Zhao: Merck: Current Employment. Blumenschein:Merck: Current Employment. Yearley:Merck: Current Employment. Wang:Novartis: Research Funding; Incyte: Research Funding; Innocare: Research Funding. Parikh:Verastem Oncology: Honoraria; GlaxoSmithKline: Honoraria; Pharmacyclics: Honoraria, Research Funding; MorphoSys: Research Funding; Ascentage Pharma: Research Funding; Genentech: Honoraria; AbbVie: Honoraria, Research Funding; Merck: Research Funding; TG Therapeutics: Research Funding; AstraZeneca: Honoraria, Research Funding; Janssen: Honoraria, Research Funding. Kenderian:Sunesis: Research Funding; MorphoSys: Research Funding; Humanigen: Consultancy, Patents & Royalties, Research Funding; Gilead: Research Funding; BMS: Research Funding; Tolero: Research Funding; Lentigen: Research Funding; Juno: Research Funding; Mettaforge: Patents & Royalties; Torque: Consultancy; Kite: Research Funding; Novartis: Patents & Royalties, Research Funding. Kay:Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Acerta Pharma: Research Funding; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Sunesis: Research Funding; MEI Pharma: Research Funding; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rigel: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees. Braggio:DASA: Consultancy; Bayer: Other: Stock Owner; Acerta Pharma: Research Funding. Ding:DTRM: Research Funding; Astra Zeneca: Research Funding; Abbvie: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Membership on an entity's Board of Directors or advisory committees; alexion: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2608-2608
Author(s):  
Claudia Gebhard ◽  
Roger Mulet-Lazaro ◽  
Lucia Schwarzfischer ◽  
Dagmar Glatz ◽  
Margit Nuetzel ◽  
...  

Abstract Acute myeloid leukemia (AML) represents a highly heterogeneous myeloid stem cell disorder classified based on various genetic defects. Besides genetic alterations, epigenetic changes are recognized as an additional mechanism contributing to leukemogenesis, but insight into the latter process remains minor. Using a combination of Methyl-CpG-Immunoprecipitation (MCIp-chip) and MALDI-TOF analysis of bisulfite-treated DNA in a cohort of 196 AML patients we previously demonstrated that (cyto)genetically defined AML subtypes, including CBFB-MYH11, AML-ETO, NPM1-mut, CEBPA-mut or IDH1/2-mut subtypes, express specific DNA-methylation profiles (Gebhard et al, Leukemia, 2018). A fraction of AML patients (5/196) displayed a unique abnormal hypermethylation profile that was completely distinct from any other AML subtype. These patients present immature leukemia (FAB M0, M1) with various chromosomal aberrations but very few mutations (e.g. no IDH1/2, KRAS, DNMT3A) that might explain the CpG island methylator phenotype (CIMP) phenotype. The CIMP patients showed high resemblance with a recently reported CEBPA methylated subgroup (Wouters et al, 2007 and Figueroa et al, 2009), which we confirmed by MCIp-chip and MALDI-TOF analysis. To explore the whole range of epigenetic alterations in the CIMP-AML patients we performed in-depth global DNA methylation and gene expression analyses (MCIp-seq and RNA-seq) in 45 AML and 12 CIMP patients from both studies. Principle component analysis and t-distributed stochastic neighbor embedding (t-SNE) revealed that CIMP patients express a unique DNA-methylation and gene-expression signature that separated them from all other AMLs. We could discriminate promoter methylation from non-promoter methylation by selecting MCIp-seq peaks within 3kb around TSS. Promoter hypermethylation was highly associated with repression of genes (PCC = -0.053, p-value = 0.00075). Hypermethylation of non-promoter regions was more strongly associated with upregulation of genes (PCC = 0.046, p-value = 4.613e-06). Interestingly, differentially methylated regions also showed a positive association with myeloid lineage CTCF binding sites (27% vs 18% expected, p-value < 2.2e-16 in a chi-square test of independence). Methylation of CTCF sites causes loss of CTCF binding, which has been reported to disrupt boundaries between so-called topologically associated domains (TADs), allowing enhancers located in a particular TAD to become accessible to genes in adjacent TADs and affect their transcription. Whether this is the case is under investigation. In this study we particularly focused on the role of hypermethylation of promoters in CIMP-AMLs. Promoters of many transcriptional regulators that are involved in the differentiation of myeloid lineages of which several are frequently mutated in AML were hypermethylated and repressed, including CEBPA, CEBPD, IRF8, GATA2, KLF4, MITF or MAFB. Notably, HMGA2, a critical regulator of myeloid progenitor expansion, exhibited the largest degree of CIMP promoter hypermethylation compared to the other AMLs, accompanied by a reduction in gene expression. Moreover, multiple members of the HOXB family and KLF1 (erythroid differentiation) were methylated and repressed as well. In addition, these patients frequently showed hypermethylation of many chromatin factors (e.g. LMNA, CHD7 or TET2). Hypermethylation of the TET2 promoter could result in a loss of maintenance DNA demethylation and therefore successive hypermethylation at CpG islands. We carried out regulome-capture-bisulfite sequencing on CIMP-AMLs compared to other AML samples and normal blood cell controls and confirmed methylation of the same transcription and chromatin factor promoters. We conclude that these leukemias represent very primitive HSCPs which are blocked in differentiation into multiple hematopoietic lineages, due to the absence of regulators of these lineages. Although the underlying cause for the extreme hypermethylation signature is still subject to ongoing studies, the consequence of promoter hypermethylation is silencing of key lineage regulators causing the differentiation arrest in these cells. We argue that these patients may particularly benefit from therapies that revert DNA methylation. Disclosures Ehninger: Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; GEMoaB Monoclonals GmbH: Employment, Equity Ownership; Bayer: Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ieva Rauluseviciute ◽  
Finn Drabløs ◽  
Morten Beck Rye

Abstract Background Prostate cancer (PCa) has the highest incidence rates of cancers in men in western countries. Unlike several other types of cancer, PCa has few genetic drivers, which has led researchers to look for additional epigenetic and transcriptomic contributors to PCa development and progression. Especially datasets on DNA methylation, the most commonly studied epigenetic marker, have recently been measured and analysed in several PCa patient cohorts. DNA methylation is most commonly associated with downregulation of gene expression. However, positive associations of DNA methylation to gene expression have also been reported, suggesting a more diverse mechanism of epigenetic regulation. Such additional complexity could have important implications for understanding prostate cancer development but has not been studied at a genome-wide scale. Results In this study, we have compared three sets of genome-wide single-site DNA methylation data from 870 PCa and normal tissue samples with multi-cohort gene expression data from 1117 samples, including 532 samples where DNA methylation and gene expression have been measured on the exact same samples. Genes were classified according to their corresponding methylation and expression profiles. A large group of hypermethylated genes was robustly associated with increased gene expression (UPUP group) in all three methylation datasets. These genes demonstrated distinct patterns of correlation between DNA methylation and gene expression compared to the genes showing the canonical negative association between methylation and expression (UPDOWN group). This indicates a more diversified role of DNA methylation in regulating gene expression than previously appreciated. Moreover, UPUP and UPDOWN genes were associated with different compartments — UPUP genes were related to the structures in nucleus, while UPDOWN genes were linked to extracellular features. Conclusion We identified a robust association between hypermethylation and upregulation of gene expression when comparing samples from prostate cancer and normal tissue. These results challenge the classical view where DNA methylation is always associated with suppression of gene expression, which underlines the importance of considering corresponding expression data when assessing the downstream regulatory effect of DNA methylation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Shanye Yin ◽  
Gregory Lazarian ◽  
Elisa Ten Hacken ◽  
Tomasz Sewastianik ◽  
Satyen Gohil ◽  
...  

A hotspot mutation within the DNA-binding domain of IKZF3 (IKZF3-L162R) has been identified as a putative driver in chronic lymphocytic leukemia (CLL); however, its functional effects are unknown. We recently confirmed its role as a CLL driver in a B cell-restricted conditional knock-in model. IKZF3 mutation altered mature B cell development and signaling capacity, and induced CLL-like disease in elderly mice (~40% penetrance). Moreover, we found IKZF3-L162R acts as a gain-of-function mutation, altering DNA binding specificity and target selection of IKZF3, and resulting in overexpression of multiple B-cell receptor (BCR) genes. Consistent with the murine data, RNA-sequencing analysis showed that human CLL cells with mut-IKZF3 [n=4] have an enhanced signature of BCR-signaling gene expression compared to WT-IKZF3 [n=6, all IGHV unmutated] (p&lt;0.001), and also exhibited general upregulation of key BCR-signaling regulators. These results confirm the role of IKZF3 as a master regulator of BCR-signaling gene expression, with the mutation contributing to overexpression of these genes. While mutation in IKZF3 has a clear functional impact on a cardinal CLL-associated pathway, such as BCR signaling, we note that this driver occurs only at low frequency in patients (~3%). Because somatic mutation represents but one mechanism by which a driver can alter a cellular pathway, we examined whether aberrant expression of IKZF3 could also yield differences in BCR-signaling gene expression. We have observed expression of the IKZF3 gene to be variably dysregulated amongst CLL patients through re-analysis of transcriptomic data from two independent cohorts of human CLL (DFCI, Landau et al., 2014; ICGC, Ferreira et al., 2014). We thus examined IKZF3 expression and BCR-signaling gene expression, or the 'BCR score' (calculated as the mean expression of 75 BCR signaling-associate genes) in those cohorts (DFCI cohort, n=107; ICGC cohort, n=274). Strikingly, CLL cells with higher IKZF3 expression (defined as greater than median expression) had higher BCR scores than those with lower IKZF3 expression (&lt;median) (p=0.0015 and p&lt;0.0001, respectively). These findings were consistent with the notion that IKZF3 may act as a broad regulator of BCR signaling genes, and that IKZF3 overexpression, like IKZF3 mutation, may provide fitness advantage. In support of this notion, our re-analysis of a gene expression dataset of 107 CLL samples (Herold Leukemia 2011) revealed that higher IKZF3 expression associated with poorer prognosis and worse overall survival (P=0.035). We previously reported that CLL cells with IKZF3 mutation appeared to increase in cancer cell fraction (CCF) with resistance to fludarabine-based chemotherapy (Landau Nature 2015). Instances of increase in mut-IKZF3 CCF upon treatment with the BCR-signaling inhibitor ibrutinib have been reported (Ahn ASH 2019). These studies together suggest an association of IKZF3 mutation with increased cellular survival following either chemotherapy or targeted treatment. To examine whether higher expression of IKZF3 was associated with altered sensitivity to ibrutinib, we performed scRNA-seq analysis (10x Genomics) of two previously treatment-naïve patients undergoing ibrutinib therapy (paired samples, baseline vs. Day 220). We analyzed an average of 11,080 cells per patient (2000 genes/cell). Of note, following ibrutinib treatment, remaining CLL cells expressed higher levels of IKZF3 transcript compared to pretreatment baseline (both p&lt;0.0001), whereas no such change was observed in matched T cells (n ranging between 62 to 652 per experimental group, p&gt;0.05), suggesting that cells with high expression of IKZF3 were selected by ibrutinib treatment. Moreover, we showed that ibrutinib treatment resulted in consistent upregulation of BCR-signaling genes (e.g., CD79B, LYN, GRB2, FOS, RAC1, PRKCB and NFKBIA) (n ranging between 362 to 1374 per experimental group, all p&lt;0.0001), which were likewise activated by mutant IKZF3. Altogether, these data imply that IKZF3 mutation or overexpression may influence upregulation of BCR-signaling genes and enhance cellular fitness even during treatment with BCR-signaling inhibitors. We highlight our observation that IKZF3 mutation appears to be phenocopied by elevated IKZF3 expression, and suggest that alterations in mRNA or protein level that mimic genetic mutations could be widespread in human cancers. Disclosures Kipps: Pharmacyclics/ AbbVie, Breast Cancer Research Foundation, MD Anderson Cancer Center, Oncternal Therapeutics, Inc., Specialized Center of Research (SCOR) - The Leukemia and Lymphoma Society (LLS), California Institute for Regenerative Medicine (CIRM): Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Honoraria, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech/Roche: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; VelosBio: Research Funding; Oncternal Therapeutics, Inc.: Other: Cirmtuzumab was developed by Thomas J. Kipps in the Thomas J. Kipps laboratory and licensed by the University of California to Oncternal Therapeutics, Inc., which provided stock options and research funding to the Thomas J. Kipps laboratory, Research Funding; Ascerta/AstraZeneca, Celgene, Genentech/F. Hoffmann-La Roche, Gilead, Janssen, Loxo Oncology, Octernal Therapeutics, Pharmacyclics/AbbVie, TG Therapeutics, VelosBio, and Verastem: Membership on an entity's Board of Directors or advisory committees. Wu:BionTech: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3493-3493
Author(s):  
Jun-ichirou Yasunaga ◽  
Yuko Taniguchi ◽  
Kisato Nosaka ◽  
Yorifumi Satou ◽  
Mlka Yoshida ◽  
...  

Abstract Adult T-cell leukemia (ATL) is a highly aggressive neoplasm of helper T lymphocytes and is etiologically associated with human T-cell leukemia virus type I (HTLV-I). Although HTLV-I encoded Tax protein is thought to play a central role in the leukemogenesis of ATL, ATL cells frequently could not produce Tax protein by the somatic mutations, deletion and loss of 5′-LTR. Moreover, a long-term latent period (almost 60 years in Japan) precedes the onset of ATL, suggesting that multistep tumorigenesis is involved in development of ATL in addition to role of viral protein. Such transformation process is thought to include alterations of host genome: genetic and epigenetic changes. The epigenetic alteration, such as DNA methylation and histone modification, is commonly observed in various cancer cells. Recently, we reported that the aberrant expression of MEL1S gene, which is hypomethylated in ATL cells, confers resistance against transforming growth factor-beta. In this study, we identified 53 aberrantly hypermethylated DNA sequences in ATL cells using methylated CpG island amplification/representational difference analysis (MCA/RDA) method. In addition, we found that the DNA methylation of these regions tends to accumulate with disease progression. Seven genes, which were expressed in normal T-cells, but suppressed in ATL cells, were identified near the hypermethylated regions. Among these silenced genes, Kruppel-like factor 4 (KLF4) gene is a cell cycle regulator and early growth response 3 (EGR3) gene is a critical transcriptional factor for induction of Fas ligand (FasL) expression. Treatment with 5-aza-2′-deoxycytidine resulted in the recovery of their transcription, indicating that their silencing is associated with DNA hypermethylation. To study their role in oncogenesis of ATL, we transfected recombinant adenovirus vectors expressing KLF4 and EGR3 genes into ATL cell lines. Expression of KLF4 induced apoptosis of ATL cells whereas enforced expression of EGR3 induced the expression of FasL gene, resulting in apoptosis. This EGR3-induced apoptosis has been inhibited by stable transfection of cellular and viral FLIP, which suppress the activation of caspase-8 by preventing pro-caspase-8 in Fas-mediated apoptosis pathway. Therefore, suppressed expression of EGR3 enabled ATL cells to escape from activation-induced cell death mediated by Fas-FasL signaling. Our results showed that the DNA hypermethylation plays an important role in the leukemogenesis of ATL by silencing transcriptions of genes that inhibit the abnormal growth of ATL cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2092-2092
Author(s):  
Krzysztof Giannopoulos ◽  
Anna Dmoszynska ◽  
Malgorzata Kowal ◽  
Ewa Wasik-Szczepanek ◽  
Paulina Wlasiuk ◽  
...  

Abstract Recently, several novel mechanisms of tumor progression were characterized in chronic lymphocytic leukemia (CLL), stressing an important role of tumor microenvironment. Direct cell-cell interactions as well as soluble factors might support tumor growth. Pro-survival signals might be supported by the tumor necrosis factor (TNF) or some distinctive members of TNF family as well as angiogenic factors. Thalidomide has been shown to be a promising immunomodulatory drug (IMiD) that targets not only leukemic cells but also the tumor microenvironment and by inhibiting angiogenesis. However, so far little is known about the molecular effects of IMiDs in-vivo. Therefore, we investigated cellular and molecular changes induced by a 7 day thalidomide mono-treatment of CLL patients. In forty cases TNF expression levels were assessed using a high sensitivity ELISA test, and T-cell subpopulations were analyzed by flow cytometry. To evaluate the influence of thalidomide on gene expression (GEP), 20 paired pre-treatment and thalidomide-treated samples were analyzed using Affymetrix U133plus2.0 microarrays. Thalidomide therapy was effective in decreasing the number of CLL cells (CD5+CD19+) from 51.75 G/L to 31.7 G/L after treatment. The number of CD3 lymphocytes showed no significant change during thalidomide therapy. No effect on CD4+ as well as CD8+ T cells was observed. Interestingly, we found significant decrease in the number of CD4+CD25hiFOXP3+ T regulatory cells (Tregs) after thalidomide (p=0.05). Thalidomide therapy did not reduce the number of other T-cell subpopulations reported to possess regulatory properties such as CD8+CD28−, CD4+GITR+, CD4+CD62L+ and CD3+TCRγδ+. The changes in Tregs during thalidomide therapy differed in cases who responded to thalidomide with a WBC reduction compared to non-responders. In cases with a WBC reduction there was a greater fold of Tregs reduction. With regard to TNF, we observed no significant changes in the TNF plasma levels after thalidomide treatment. However, the expression of TNF R1 was significantly higher in patients without WBC reduction following thalidomide (p=0.03). Gene expression profiling revealed a thalidomide-induced signature comprising 123 differentially expressed genes (paired t-test with random variance model, p&lt;0.001). Upon thalidomide treatment we observed an up-regulation of genes known to be involved in mediating thalidomide response, such as FAS and CDKN1A. In addition, we detected novel candidate genes, such as STAT1 and IKZF1. By gene set enrichment analysis investigating 271 BioCarta pathways we found 22 pathways to be significantly deregulated (random variance model, p&lt;0.005). These included pathways involved in apoptosis, angiogenesis, cytokine, PDGF and p38 MAPK signaling. Cases with a WBC reduction following thalidomide administration were characterized by a lower expression of pro-survival cytokines such as IL8 and lower levels of TGFB1, whereas genes involved in apoptosis like e.g. CASP1 were more highly expressed than in non-responders. On the other hand, non-responders showed higher ZAP70 expression as determined by microarray analysis and higher expression levels of anti-apoptotic genes, such as TRAF1, and genes involved in angiogenesis, such as ECGF1. However, only thalidomide responders showed also a correlation with CD40L signaling. We were also able to define a thalidomide response signature. For example, pretreatment samples derived from cases responding to thalidomide with a WBC reduction differed from non-responders with regard to the expression of JUN and CASP9. In conclusion, our study provides novel biological insights into the molecular effects of thalidomide, which might act (i) by enhancing apoptosis of CLL cells and (ii) by reducing Tregs, thereby enabling T-cell dependent tumor rejection.


Sign in / Sign up

Export Citation Format

Share Document