scholarly journals Immune Suppression in CLL Is Mediated By the L-Amino Acid Oxidase IL4I1, a Reason for the Treatment Failure of IDO1 Inhibitors

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-34
Author(s):  
Selcen Öztürk ◽  
Murat Iskar ◽  
Murat Sunbul ◽  
Philipp M Rößner ◽  
Marc Zapatka ◽  
...  

A better understanding of cancer-induced immune suppression has led to the development of novel immunotherapy approaches, some of which are considered as breakthrough in cancer treatment. One of the promising targets that was followed in clinical trials is indoleamine-2,3-dioxygenase 1 (IDO1) which is a tryptophan (Trp)-catabolizing enzyme that produces metabolites such as kynurenine (Kyn) which promote immune evasion by suppressing T cell activity, and therefore tumor progression. Enhanced expression of IDO1 was described for patients with B cell lymphoma, including chronic lymphocytic leukemia (CLL), and we observed a strong upregulation of IDO1 and a significantly increased Kyn to Trp serum ratio in the Eµ-TCL1 mouse model of CLL. To evaluate the therapeutic potential of this pathway in CLL, we treated Eµ-TCL1 mice with the IDO1 inhibitors 1-Methyl-D-tryptophan or Epacadostat. Both drugs led to initial treatment responses, but failed to improve tumor development over time which is in line with disappointing results of a first phase III clinical trial combining Epacadostat with immune checkpoint blockade for patients with melanoma. In search for an explanation for this failure, we investigated genes that are induced upon resistance to immune checkpoint blockade and identified the phenylalanine-catabolizing enzyme interleukin-4-induced 1 (IL4I1). IL4I1 is strongly expressed in cancer-associated myeloid cells as well as tumor cells of different entities, including CLL and other B cell lymphoma, and was attributed immunosuppressive functions. We thus explored its role in cancer immune escape in bone marrow-chimeric mice that lack IL4I1 in the hematopoietic tumor microenvironment. Adoptive transfer of Eµ-TCL1 leukemia in these mice showed that lack of IL4I1 in hematopoietic cells resulted in a dramatically reduced tumor development compared to respective control mice (Figure 1A). In-depth analysis of the immune compartment of these mice by flow cytometry and transcriptome analyses revealed that IL4I1 deficiency was associated with lower expression of immune checkpoint molecules including PD-1 on CD8 T cells. Moreover, CD8+ effector T cells of IL4I1-deficient mice were highly enriched in a transcriptional signature of genes that was downregulated upon T-cell exhaustion (Figure 1B). We further observed less suppressive regulatory T cells, and enhanced antigen presentation capacity of dendritic cells in the IL4I1-deficient chimeric mice developing CLL. Altogether, these results provide evidence for a central role for IL4I1 in CLL-associated immune suppression and suggest IL4I1 as attractive novel target for immunotherapy of cancer, including tumors that do not respond to IDO1 inhibitors. Figure 1: CLL development and CD8 T cell phenotype in mice with IL4I1-deficient microenvironment A: Bone marrow (BM)-chimeric mice were generated by i.v. transplantation of 5 x 106 BM cells of wildtype (WT) or Il4i1-/-mice in lethally irradiated C57BL/6 mice. After reconstitution of the hematopoietic system, 10 weeks after BM transfer, mice were i.v. transplanted with 1 x 107 malignant B cells of Eµ-TCL1 mice and CLL development was monitored in peripheral blood over time by quantifying absolute number of CD5+ CD19+ CLL cells by flow cytometry. B: 5 weeks after CLL cell transfer, mice were sacrificed and splenic CD8+ effector T cells were sorted for transcriptome analysis by microarrays. Gene set enrichment analysis of ranked-list of genes (fold change) was performed using published signatures which showed an enrichment of genes that are downregulated in exhausted versus memory CD8+ T cells in Il4i1-/- in comparison to WT mice. Figure Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 14 (9) ◽  
pp. 101170
Author(s):  
Vera Bauer ◽  
Fatima Ahmetlić ◽  
Nadine Hömberg ◽  
Albert Geishauser ◽  
Martin Röcken ◽  
...  

Author(s):  
Anne Scheuerpflug ◽  
Fatima Ahmetlić ◽  
Vera Bauer ◽  
Tanja Riedel ◽  
Martin Röcken ◽  
...  

Abstract Immune checkpoint blocking (ICB) is a promising new tool of cancer treatment. Yet, the underlying therapeutic mechanisms are not fully understood. Here we investigated the role of dendritic cells (DCs) for the therapeutic effect of ICB in a λ-MYC-transgenic mouse model of endogenously arising B-cell lymphoma. The growth of these tumors can be effectively delayed by antibodies against CTLA-4 and PD-1. Tumor-infiltrating DCs from mice having received therapy showed an upregulation of costimulatory molecules as well as an augmented IL-12/IL-10 ratio as compared to untreated controls. Both alterations seemed to be induced by interferon-γ (IFN-γ), which is upregulated in T cells and natural killer cells upon ICB. Furthermore, the enhanced IL-12/IL-10 ratio, which favors Th1-prone antitumor T-cell responses, was a consequence of direct interaction of ICB antibodies with DCs. Importantly, the capability of tumor-infiltrating DCs of stimulating peptide-specific or allogeneic T-cell responses in vitro was improved when DCs were derived from ICB-treated mice. The data indicate that ICB therapy is not only effective by directly activating T cells, but also by triggering a complex network, in which DCs play a pivotal role at the interface between innate and adaptive antitumor responses.


2020 ◽  
Vol 14 (4) ◽  
pp. 312-323
Author(s):  
Romeo G. Mihăilă

Background: Patients with refractory or relapsed diffuse large B-cell lymphoma have a poor prognosis with the current standard of care. Objective: Chimeric Antigen Receptor T-cells (CAR T-cells) are functionally reprogrammed lymphocytes, which are able to recognize and kill tumor cells. The aim of this study is to make progress in this area. Method: A mini-review was achieved using the articles published in Web of Science and PubMed in the last year and the new patents were made in this field. Results: The responses to CAR T-cell products axicabtagene ciloleucel and tisagenlecleucel are promising; the objective response rate can reach up to 83%, and the complete response rate ranges between 40 and 58%. About half of the patients may have serious side effects, such as cytokine release syndrome and neurotoxicity. Current and future developments include the improvement of CAR T-cell expansion and polyfunctionality, the combined use of CAR T-cells with a fusion protein between interferon and an anti-CD20 monoclonal antibody, with checkpoint inhibitors or small molecule sensitizers that have apoptotic-regulatory effects. Furthermore, the use of IL-12-expressing CAR T-cells, an improved technology for the production of CAR T-cells based on targeted nucleases, the widespread use of allogeneic CAR T-cells or universal CAR T-cells obtained from genetically engineered healthy donor T-cells are future developments actively considered. Conclusion: CAR T-cell therapy significantly improved the outcome of patients with relapsed or refractory diffuse large B-cell lymphoma. The advances in CAR T-cells production technology will improve the results and enable the expansion of this new immunotherapy.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Gary Kwok Cheong Lee ◽  
Dorothee Bienzle ◽  
Stefan Matthias Keller ◽  
Mei-Hua Hwang ◽  
Nikos Darzentas ◽  
...  

Abstract Background Lymphocytic neoplasms with frequent reactive lymphocytes are uncommonly reported in dogs, and can pose a diagnostic challenge. Different diagnostic modalities such as cytology, flow cytometry, histopathology, immunohistochemistry, and clonality testing, are sometimes required for a diagnosis. This report illustrates the value of using a multi-modal diagnostic approach to decipher a complex lymphocytic tumor, and introduces immune repertoire sequencing as a diagnostic adjunct. Case presentation A 10-month-old Great Dane was referred for marked ascites. Cytologic analysis of abdominal fluid and hepatic aspirates revealed a mixed lymphocyte population including numerous large lymphocytes, yielding a diagnosis of lymphoma. Flow cytometrically, abdominal fluid lymphocytes were highly positive for CD4, CD5, CD18, CD45, and MHC II, consistent with T cell lymphoma. Due to a rapidly deteriorating clinical condition, the dog was euthanized. Post mortem histologic evaluation showed effacement of the liver by aggregates of B cells surrounded by T cells, suggestive of hepatic T cell-rich large B cell lymphoma. Immune repertoire sequencing confirmed the presence of clonal B cells in the liver but not the abdominal fluid, whereas reactive T cells with shared, polyclonal immune repertoires were found in both locations. Conclusions T cell-rich large B cell lymphoma is a rare neoplasm in dogs that may be challenging to diagnose and classify due to mixed lymphocyte populations. In this case, the results of histopathology, immunohistochemistry and immune repertoire sequencing were most consistent with a hepatic B cell neoplasm and reactive T cells exfoliating into the abdominal fluid. Immune repertoire sequencing was helpful in delineating neoplastic from reactive lymphocytes and characterizing repertoire overlap in both compartments. The potential pitfalls of equating atypical cytomorphology and monotypic marker expression in neoplasia are highlighted.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2199-2199
Author(s):  
Matt L Cooper ◽  
Karl W. Staser ◽  
Julie Ritchey ◽  
Jessica Niswonger ◽  
Byung Ha Lee ◽  
...  

Abstract Background: Chimeric antigen receptor T cell (CART) therapy is revolutionizing modern cancer therapy, with two anti-CD19 CARTs FDA-approved for relapsed/refractory B cell lymphoma/leukemia and many other CARTs for solid and liquid tumors currently undergoing clinical trials. Our group recently demonstrated multiplexed CRISPR/Cas9 gene-editing of anti-CD7 CARTs to produce CD7 and T cell receptor alpha constant (TRAC)-deleted "off-the-shelf" universal (U)CART7s that effectively kill CD7+ T cell lymphoma in vivo without causing GVHD or fratricide (Cooper et al, Leukemia, 2018). However, in current clinical practice, suboptimal CART persistence and tumor killing permit tumor cell escape and, ultimately, disease relapse. Reasoning that a pro-lymphoid growth factor could promote CART efficacy, we supplemented UCART infusion with subcutaneous injections of the long-acting form of recombinant human interleukin-7 fused with hybrid Fc (rhIL-7-hyFc, NT-I7) in vivo using a CD19+ lymphoma xenograft model. Methods: To create anti-CD19 universal CARTs (UCART19), we activated human T cells on CD3/CD28 beads, electroporated the T cells with Cas9 mRNA and a TRAC-targeted gRNA, and virally transduced an anti-CD19 scFv 3rd generation CAR containing a peptidase 2A-cleaved human CD34 construct for both purification and tracking in vivo. Residual TRAC+ cells were depleted using magnetic selection. For xenograft tumor modeling in vivo, we injected NOD-scid IL2Rgammanull (NSG) mice with 5x105 RamosCBR-GFP cells four days prior to UCART19 (2x106 cells). Mice were treated with NT-I7 (10mg/kg SC) on days +1, +15 and +29 post UCART19 infusion. Results:RamosCBR-GFP mice receiving NT-I7 without UCART19 (NT-I7 only group) survived marginally longer (24 day med survival) than mice receiving RamosCBR-GFP cells alone (No tx group) (21 day medium survival, p=0.018, NT-I7 only vs. No Tx). While RamosCBR-GFP mice treated with UCART19 alone (UCART19 group) survived 33 days, 100% of RamosCBR-GFP mice treated with UCART19 and NT-I7 (UCART19+NT-I7 group) were alive at 80 days (Fig 1a), with no mouse showing signs of xenogeneic GVHD (p<0.0001, UCART19+NT-I7 vs. UCART19). At three weeks post UCART19 infusion, bioluminescent imaging (BLI) revealed minimal tumor signal in UCART19+NT-I7 treated mice (108 vs. 1010 photon flux/s, p<0.05, UCART19+NT-I7 vs. UCART19) and near-undetectable photon flux/s at four weeks (107 vs 1011 photon flux/s, p<0.0001, UCART19+NT-I7 vs. UCART19). Quantitative 17-parameter flow cytometric analyses of the blood, bone marrow, and spleens revealed an up to ~8000-fold increase in UCART19 cells in NT-I7-treated mice four weeks post UCART19 infusion (Fig 1a). These UCART19 cells demonstrated a predominantly effector and effector memory phenotype. Discussion: CARTs engineered to express interleukin-7 and CCL19 showed increased migration to and killing of solid tumors (Adachi et al, Nature Biotechnology, 2018). However, genetically engineered potentiation strategies lack "off-switches" and may preclude additional genetic enhancements required for universal "off-the-shelf" CART development. Here, we demonstrate that a pharmacological grade long-acting interleukin-7 agonist can potentiate adoptive cellular therapies. Specifically, NT-I7 can dramatically enhance gene modified T cell proliferation, persistence and tumor killing in vivo, resulting in enhanced survival, providing a tunable clinic-ready adjuvant for reversing suboptimal CART activity in vivo. Disclosures Cooper: WUGEN: Consultancy, Equity Ownership. Lee:NeoImmuneTech: Employment. Park:NeoImmuneTech: Employment.


2018 ◽  
Vol 2 (19) ◽  
pp. 2568-2580 ◽  
Author(s):  
Suparna Dutt ◽  
Michelle B. Atallah ◽  
Yoshitaka Minamida ◽  
Alexander Filatenkov ◽  
Kent P. Jensen ◽  
...  

Abstract Conventional local tumor irradiation (LTI), delivered in small daily doses over several weeks, is used clinically as a palliative, rather than curative, treatment for chemotherapy-resistant diffuse large B-cell lymphoma (DLBCL) for patients who are ineligible for hematopoietic cell transplantation. Our goal was to test the hypothesis that accelerated, but not conventional, LTI would be more curative by inducing T cell–mediated durable remissions. We irradiated subcutaneous A20 and BL3750 lymphoma tumors in mice with a clinically relevant total radiation dose of 30 Gy LTI, delivered in 10 doses of 3 Gy over 4 days (accelerated irradiation) or as 10 doses of 3 Gy over 12 days (conventional irradiation). Compared with conventional LTI, accelerated LTI resulted in more complete and durable tumor remissions. The majority of these mice were resistant to rechallenge with lymphoma cells, demonstrating the induction of memory antitumor immunity. The increased efficacy of accelerated LTI correlated with higher levels of tumor cell necrosis vs apoptosis and expression of “immunogenic cell death” markers, including calreticulin, heat shock protein 70 (Hsp70), and Hsp90. Accelerated LTI–induced remissions were not seen in immunodeficient Rag-2−/− mice, CD8+ T-cell–depleted mice, or Batf-3−/− mice lacking CD8α+ and CD103+ dendritic cells. Accelerated, but not conventional, LTI in immunocompetent hosts induced marked increases in tumor-infiltrating CD4+ and CD8+ T cells and MHCII+CD103+CD11c+ dendritic cells and corresponding reductions in exhausted PD-1+Eomes+CD8+ T cells and CD4+CD25+FOXP3+ regulatory T cells. These findings raise the possibility that accelerated LTI can provide effective immune control of human DLBCL.


2020 ◽  
Vol 11 (1) ◽  
pp. 68-79 ◽  
Author(s):  
Frederick J. Kohlhapp ◽  
Dipica Haribhai ◽  
Rebecca Mathew ◽  
Ryan Duggan ◽  
Paul A. Ellis ◽  
...  

2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S107-S107
Author(s):  
E Ozluk ◽  
E Wei

Abstract Introduction/Objective Growth patterns of nodular lymphocyte predominant Hogdkin lymphoma (NLPHL) has been further described by Fan et all. Pattern E is T cell/histiocyte rich large B-cell lymphoma-like and is quite rare. The treatment usually may follow large B cell lymphoma protocol instead of Hodgkin lymphoma regimen. Methods Here we report a patient with NLPHL pattern E. Patient was a 25 years-old African American man who initially presented with generalized lymphadenopathy. Results Biopsy of the axillary lymph node revealed effaced lymph node architecture by a malignant neoplasm in a diffuse and vaguely nodular pattern. In the background of a diffuse infiltrate, there were small to medium sized lymphocytes, numerous atypical large cells with irregular, basophilic nucleoli, and variable cytoplasm. The large cells focally sheeted out. Many histiocytes were also seen in the background. The large atypical cells were positive for CD20, BOB-1, OCT2, BCL-2 (focally), BCL-6, PAX5, and MUM-1, and IgD, whereas negative for BCL-1, CD10, CD15, CD30. CD2, CD3, CD4, CD5, CD7, CD8 highlighted numerous T cells with mild cytological atypia, forming rosettes around the large atypical cells. T cells were negative for ALK-1, CD1a, TdT with increased Ki-67 proliferation index around 35%. Although the surrounding T cells appear atypical in morphology, flow cytometric analysis showed predominantly reactive T-cells with no loss of T-cell associated antigens. PCR analysis showed a producible peak in a single IgH reaction. However, the fragment size of the peak observed did not meet the criteria. T-cell gene rearrangement by TCR gamma and TCR beta PCR was negative for monoclonal T-cells. BCL-1, BCL-2, and BCL-6 FISH panel were negative for gene rearrangements. Based on these findings the diagnosis was made at stage IV. Patient started treatment with R-CHOP therapy with subsequent relapse. Patient has been placed on RICE chemotherapy with partial response. Conclusion NLPHL Pattern E type should be differentiated from classical Hodgkin lymphoma, diffuse large B-cell lymphoma and peripheral T cell lymphoma because the treatment greatly differs from those with higher stage and tendency for recurrence. It is the pathologist role to lead the clinician and render a correct histopathologic diagnosis.


2019 ◽  
Vol 20 (7) ◽  
pp. 1677 ◽  
Author(s):  
Priyanka Chauhan ◽  
James Lokensgard

The programmed death (PD)-1/PD-L1 pathway is a well-recognized negative immune checkpoint that results in functional inhibition of T-cells. Microglia, the brain-resident immune cells are vital for pathogen detection and initiation of neuroimmune responses. Moreover, microglial cells and astrocytes govern the activity of brain-infiltrating antiviral T-cells through upregulation of PD-L1 expression. While T-cell suppressive responses within brain are undoubtedly beneficial to the host, preventing cytotoxic damage to this vital organ, establishment of a prolonged anti-inflammatory milieu may simultaneously lead to deficiencies in viral clearance. An immune checkpoint blockade targeting the PD-1: PD-L1 (B7-H1; CD274) axis has revolutionized contemporary treatment for a variety of cancers. However, the therapeutic potential of PD1: PD-L1 blockade therapies targeting viral brain reservoirs remains to be determined. For these reasons, it is key to understand both the detrimental and protective functions of this signaling pathway within the brain. This review highlights how glial cells use PD-L1 expression to modulate T-cell effector function and limit detrimental bystander damage, while still retaining an effective defense of the brain.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5486-5486
Author(s):  
Robert E. Hawkins ◽  
David E. Gilham ◽  
Fiona C. Thistlethwaite ◽  
John A. Radford ◽  
Eleanor J. Cheadle

Abstract The success of monoclonal antibodies in the treatment of certain cancers demonstrates that immune based therapies can work and are particularly effective in B cell malignancies. However, tumours can still avoid antibody mediate mechanisms of attack and there is currently no estalbished method of effectively recruiting T cells to harness their potential anti-tumour effects. We are exploring gene therapy approaches to endow T cells with antibody type specificity in order to more efficiently target and lyse tumours and thereby improve the overall immune therapy of cancer T cells grafted with a CD19 specific receptor consisting of a CD19 scFv linked to human CD3zeta (CD19z) were tested for their potency against B cell lymphoma lines in vivo. T cells were engineered using retroviral vestors to possess a CD19 specific receptor which endows the T cells with specificity for B cell lymphoma. The vector incorporates a truncated hCD34 gene as a marker to facilitate assessment of transduced cells using as clinically applicable, non-immunogenic marker gene. Mice bearing B cell lymphoma were treated with a systemic infusion of targeted T cells with or without non-myeloablative chemotherapy. Human T cells targeting CD19 cured 40% of SCID/beige mice with 6 day established metastatic tumour but only in conjunction with a single dose of cyclophosphamide. Murine T cells expressing the CD19z receptor were also effective with cure of 24hr established s.c human CD19+ tumour in SCID/beige and immunocompetent mice. Pretreatment with cyclophosphamide did not affect T cell engraftment or efficacy in immuno-compromised animals but was necessary for T cell engraftment in immuno-competent animals. These results which parallel the approach successfully used with tumour infiltrating lymhocytes in melanoma patients conclusively demonstrate that the combination of engineered T cells with “pre-conditioning” chemotherapy significantly impacts upon tumour growth in vivo and this evidence supports the development of phase I clinical trials targeting B cell lymphoma.


Sign in / Sign up

Export Citation Format

Share Document