scholarly journals Single-Cell Transcriptomic Analysis Reveals Loss of Activated Bone Marrow NK Cells in Multiple Myeloma Patients Which Associates with Disease Progression in Mice

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1578-1578
Author(s):  
Sabrin Tahri ◽  
Zoltan Kellermayer ◽  
Madelon M.E. de Jong ◽  
Natalie Papazian ◽  
Cathelijne Fokkema ◽  
...  

Abstract Introduction Multiple Myeloma (MM) disease progression and therapy response are the net result of tumor cell-intrinsic features and tumor cell-extrinsic cues from the bone marrow (BM) microenvironment. Natural killer (NK) cells are mediators of the cytotoxic immune response against MM and are important effector cells in antibody-based immune therapies, especially anti-CD38 monoclonal antibodies such as Daratumumab. Classically, NK cells are divided into a cytotoxic CD56 dim subset, important for antibody-dependent cellular cytotoxicity, and a cytokine-producing CD56 bright subset releasing inflammatory mediators such as IFNγ, TNFα and GM-CSF. However, accumulating evidence suggests greater heterogeneity in the NK cell compartment and modulation of these NK cell subsets could impact disease progression and response to NK cell-driven immunotherapies. Here, we combined the 5TGM1 murine model of MM with single-cell RNA sequencing of bone marrow (BM) NK cells of newly diagnosed MM patients to map NK cell heterogeneity and to investigate their role in MM progression. Results To gain insight in NK cell heterogeneity in MM disease we performed single-cell RNA sequencing on immune cells of viably frozen BM aspirates from 19 newly diagnosed MM patients and 5 non-cancer control patients. NK cells were identified in silico by transcription of KLRF1, KLRD1, GNLY and NKG7 resulting in a single-cell transcriptomic dataset of 30,373 NK cells from MM patients and 8,865 NK cells from control patients. Conventional CD56 bright and CD56 dim NK-cells were identified by increased transcription of GZMK or GZMB, respectively. The GZMK +CD56 bright NK cells contained clusters of naïve and activated NK cells. The GZMB+CD56 dim NK cells consisted of 5 subclusters. To identify MM-induced alterations in NK cell subsets, we compared GZMK +CD56 bright vs GZMB+CD56 dim cluster composition and distribution between controls and MM patients. Control BM was dominated by GZMB-transcribing cytotoxic CD56 dim NK cells, resulting in a low ratio of cytokine-producing GZMK +CD56 bright vs cytotoxic GZMB+CD56 dim NK cells. In contrast, MM bone marrow was characterized by heterogeneity of this ratio with a subset of patients presenting with complete reversal of this ratio . In this subset of patients, the altered composition was due to a loss of cytotoxic GZMB +CD56 dim NK cells, and more specifically a loss of NK cells with a transcriptome suggesting recent activation. To better examine the significance of cytotoxic NK cells in MM disease course we utilized the well-established 5TGM1 mouse model. C57Bl/6 and KaLwRij mice both received 10 6 5TGM1-GFP cells intravenously. Three weeks after tumor injection all KaLwRij mice (18/18) developed MM, defined by >5% tumor cells in BM ("unrestrained tumor") and serum M-protein >2mg/ml. Interestingly, while 39% (7/18) of C57Bl/6 mice had no tumor, 44% (8/18) had low but detectable levels of MM cells (0.1-5% of BM cells, "restrained tumor") and 17% (3/18) presented with an unrestrained MM with BM tumor load similar to that seen in KaLwRij mice. With time the percentage of mice with unrestrained tumor increased (5/12, 42%) at the expense of restrained tumor (2/12, 16%). We hypothesized that C57Bl/6 mice with low tumor load could represent a model of immune-mediated tumor control. Detailed analysis of the NK cell compartment revealed an expansion of activated mature (CD69 + CD11b +CD27 +) NK cells in C57Bl/6 mice with restrained BM MM (p=0.0031). In contrast, high BM tumor burden in both genotypes was associated with a sharp decline in absolute numbers of activated NK cells. Conclusion: Through a combination of single-cell transcriptomic analyses of the BM immune microenvironment in MM patients and experimental mouse models we found a loss of activated NK cells in a subset of patients and mice. Our data suggests that loss of these activated NK cells is associated with MM progression in vivo. A subset of MM patients presented with a loss of activated cytotoxic GZMB +CD56 dim NK cells in the BM, suggestive of reduced cytotoxic anti-tumor responses. Meanwhile, in vivo, high disease burden only occurred in mice with an absence of activated NK cells. Current analyses are focused on differences in human disease progression and efficacy of Daratumumab-based therapies in patients with various NK cell phenotypes. Disclosures Broijl: Janssen, Amgen, Sanofi, Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees. Sonneveld: Janssen: Consultancy, Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria, Research Funding; Celgene/BMS: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; SkylineDx: Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 378-378
Author(s):  
Jianbiao Zhou ◽  
Jonathan Adam Scolnick ◽  
Stacy Xu ◽  
Melissa Ooi ◽  
Priscella Shirley Chia ◽  
...  

Abstract Background: Approximately 20% of AML patients do not respond to induction chemotherapy (primary resistance) and 40-60% of patients develop secondary resistance, eventually leading to relapse followed by refractory disease (RR-AML). Diversified molecular mechanisms have been proposed for drug resistance and RR phenotype. However, we still cannot predict when relapse will occur, nor which patients will become resistant to therapy. Single-cell multi-omic (ScMo) profiling may provide new insights into our understanding of hematopoietic stem cell (HSC) differentiation trajectories, tumor heterogeneity and clonal evolution. Here we applied ScMo to profile bone marrow (BM) from AML patients and healthy controls. Methods: AML samples were collected at diagnosis with institutional IRB approval. Cells were stained with a panel of 62 DNA barcoded antibodies and 10x Genomics Single Cell 3' Library Kit v3 was used to generate ScMo data. After normalization, clusters were identified using Uniform Manifold Approximation and Projection (UMAP) and annotated using MapCell (Koh and Hoon, 2019). We analyzed 23,933 cells from 4 adult AML BM samples, and 39,522 cells from 2 healthy adults and 3 sorted CD34+ normal BM samples. Gene set enrichment analysis (GSEA) and Enrichr program were used to examine underlying pathways among differentially expressed genes between healthy and AML samples. Results: We identified 16 cell types between the AML and normal samples (Fig 1a) amongst 45 clusters in the UMAP projection (Fig 1b). Comparative analysis of the T cell clusters in AML samples with healthy BM cells identified an "AML T-cell signature" with over-expression of genes such as granzymes, NK/T cell markers, chemokine and cytokine, proteinase and proteinase inhibitor (Fig 2a). Among them, IL32 is known to be involved in activation-induced cell death in T cells and has immunosuppressive role, while CD8+ GZMB+ and CD8+ GZMK+ cells are considered as dysfunctional or pre-dysfunctional T cells. Indeed, Enrichr analysis showed the top rank of phenotype term - "decreased cytotoxic T cell cytolysis". We next examined whether NK cells, are similarly dysfunctional in the AML ecosystem. The "AML NK cell signature" includes Fc Fragment family, IFN-stimulated genes (ISGs), the effector protein-encoding genes and other genes when compared to normal NK cells (Fig 2b). GSEA analysis revealed "PD-1 signalling" among the top 5 ranked pathways in AML-NK cells, though no increase in PD-1 protein nor PDCD1 gene were identified in these cells. Inhibitory receptor CD160 was expressed higher in AML samples along with exhaustion (dysfunction) associated genes TIGIT, PRF1 and GZMB (Fig 2c). Enrichr analysis uncovered enrichment of "abnormal NK cell physiology and "impaired natural killer cell mediated cytotoxicity". Similarly, the "AML monocyte signature" was significantly enriched with genes in "Tumor Infiltrating Macrophages in Cancer Progression and Immune Escape" and "Myeloid Derived Suppressor Cells in Cancer Immune Escape". We also analyzed HSPC component in one pair of cytogenetically matched, untreated complete remission (CR) /RR AML pair (Fig 2d). Notably, half of the 10 genes overexpressed in RR-AML, CXCR4, LGALS1, S100A8, S100A9, SRGN (Serglycin), regulate cell-matrix interaction and play pivotal roles in leukemic cells homing bone marrow niche. The first 4 of these genes have been demonstrated as prognostic indicators of poor survival and associated with chemo-resistance and anti-apoptotic function. Furthermore, single-cell trajectory analysis of this CR/RR pair illustrated a change in differentiation pattern of HSPCs in CR-AML to monocytes in RR-AML. We are currently analyzing more AML samples to validate these findings. Conclusions: Our ScMo analysis demonstrates that the immune cells are systematically reprogrammed and functionally comprised in the AML ecosystem. Upregulation of BM niche factors could be the underlying mechanism for RR-AML. Thus, reversing the inhibited immune system is an important strategy for AML therapy and targeting leukemic cell-BM niche interaction should be considered for cases with high expression of these molecules on AML HSPCs. Note: J.Z. and J.A.S. share co-first authorship. Figure 1 Figure 1. Disclosures Scolnick: Proteona Pte Ltd: Current holder of individual stocks in a privately-held company. Xu: Proteona Pte Ltd: Current Employment. Ooi: Jansen: Honoraria; Teva Pharmaceuticals: Honoraria; GSK: Honoraria; Abbvie: Honoraria; Amgen: Honoraria. Lovci: Proteona Pte Ltd: Current Employment. Chng: Aslan: Research Funding; Takeda: Honoraria; Johnson & Johnson: Honoraria, Research Funding; BMS/Celgene: Honoraria, Research Funding; Amgen: Honoraria; Novartis: Honoraria, Research Funding; Antengene: Honoraria; Pfizer: Honoraria; Sanofi: Honoraria; AbbVie: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3825-3825
Author(s):  
Jennifer A. Foltz ◽  
Melissa M. Berrien-Elliott ◽  
David A. Russler-Germain ◽  
Carly C. Neal ◽  
Jennifer Tran ◽  
...  

Abstract Natural killer (NK) cells are innate lymphoid cells that mediate anti-tumor responses and exhibit innate memory following stimulation with IL-12, IL-15, and IL-18, thereby differentiating into cytokine-induced memory-like (ML) NK cells. ML NK cells have well-described enhanced anti-tumor properties; however, the molecular mechanisms underlying their enhanced functionality are not well-understood. Initial reports of allogeneic donor ML NK cellular therapy for relapsed/refractory (rel/ref) acute myeloid leukemia (AML) demonstrated safety and a 47% CR/CRi rate (PMID32826231). In this setting, allogeneic ML NK cells are rejected after 3 weeks by recipient T cells, which precludes long-term evaluation of their biology. To address this limitation, we conducted a clinical trial for rel/ref AML patients that added adoptive transfer of same-donor ML NK cells on day +7 of a reduced-intensity conditioning (RIC) MHC-haploidentical HCT, followed by 4 doses of IL-15 (N-803) over 2 weeks (NCT02782546). Since the ML NK cells are from the HCT donor, they are not rejected, but remain MHC-haploidentical to the patient leukemia. Using samples from these patients, we profiled the single cell transcriptomes of NK cells using multidimensional CITE-seq, combining scRNAseq with a custom NK panel of antibodies. To identify donor ML NK cells in an unbiased fashion, we developed a CITE-seq ML NK classifier from in vitro differentiated paired conventional NK (cNK) and ML NK cells. This classifier was applied via transfer learning to CITE-seq analyzed samples from the donor (cNK cells) and patients at days +28 and +60. This approach identified 28-40% of NK cells as ML at Day +28 post-HCT. Only 1-6% of donor peripheral blood NK cells and 4-7% of NK cells in comparator leukemia patients at day +28 after conventional haplo-HCT alone were identified as ML NK cells (Fig 1A). These ML NK cells had a cell surface receptor profile analogous to a previously reported mass cytometry phenotype. Within the CITE-seq data, ML NK cells expressed a transcriptional profile consistent with enhanced functionality (GZMK, GZMA, GNLY), secreted proteins (LTB, CKLF), a distinct adhesome, and evidence of prior activation (MHC Class II and interferon-inducible genes). ML NK cells had a unique NK receptor repertoire including increased KIR2DL4, KLRC1(NKG2A), CD300A, NCAM1(CD56) , and CD2 with decreased expression of the inhibitory receptor KLRB1(CD161). Furthermore, ML NK cells upregulated HOPX, a transcription factor implicated in memory T cells and murine CMV adaptive NK cells. Additionally, ML NK cells downregulated transcription factors related to terminal maturation (ZEB2) and exhaustion (NR4A2). We next sought to identify changes during ML differentiation in patients post-HCT from day +28 to +60 post-HCT. Trajectory analysis identified a ML NK cell state distinct from cNK cells that was present at least 60 days post-HCT (Fig 1B). The ML transcriptional phenotype continued to modulate during late differentiation, including downregulation of GZMK and NCAM1, and upregulation of maturation related transcription factors, while maintaining high expression of HOPX. ML NK cells retained their enhanced functionality during in vivo differentiation, as patient ML NK cells had significantly increased IFNγ production compared to cNK cells after restimulation with leukemia targets or cytokines using mass cytometry (Fig. 2). Subsequently, we confirmed the ML CITE-seq profile in an independent clinical trial treating pediatric AML relapsed after allogenic HCT with same-donor ML NK cells (NCT03068819). In this setting, ML NK cells expressed a similar transcriptional signature and persisted for at least 2 months in the absence of exogenous cytokine support. Thus, ML NK cells possess a distinct transcriptional and surface proteomic profile and undergo in vivo differentiation while persisting within patients for at least 2 months. These findings reveal novel and unique aspects of the ML NK cell molecular program, as well as their prolonged functional persistence in vivo in patients, assisting in future clinical trial design. Figure 1 Figure 1. Disclosures Foltz: Kiadis: Patents & Royalties: TGFbeta expanded NK cells; EMD Millipore: Other: canine antibody licensing fees. Berrien-Elliott: Wugen: Consultancy, Patents & Royalties: 017001-PRO1, Research Funding. Bednarski: Horizon Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Fehniger: Wugen: Consultancy, Current equity holder in publicly-traded company, Patents & Royalties: related to memory like NK cells, Research Funding; ImmunityBio: Research Funding; Kiadis: Other; Affimed: Research Funding; Compass Therapeutics: Research Funding; HCW Biologics: Research Funding; OrcaBio: Other; Indapta: Other.


Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Mamiko Noda ◽  
Yoshiki Omatsu ◽  
Tatsuki Sugiyama ◽  
Shinya Oishi ◽  
Nobutaka Fujii ◽  
...  

Abstract Natural killer (NK) cells are granular lymphocytes that are generated from hematopoietic stem cells and play vital roles in the innate immune response against tumors and viral infection. Generation of NK cells is known to require several cytokines, including interleukin-15 (IL-15) and Fms-like tyrosine kinase 3 ligand, but not IL-2 or IL-7. Here we investigated the in vivo role of CXC chemokine ligand-12 (CXCL12) and its primary receptor CXCR4 in NK-cell development. The numbers of NK cells appeared normal in embryos lacking CXCL12 or CXCR4; however, the numbers of functional NK cells were severely reduced in the bone marrow, spleen, and peripheral blood from adult CXCR4 conditionally deficient mice compared with control animals, probably resulting from cell-intrinsic CXCR4 deficiency. In culture, CXCL12 enhanced the generation of NK cells from lymphoid-primed multipotent progenitors and immature NK cells. In the bone marrow, expression of IL-15 mRNA was considerably higher in CXCL12-abundant reticular (CAR) cells than in other marrow cells, and most NK cells were in contact with the processes of CAR cells. Thus, CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adults, and CAR cells might function as a niche for NK cells in bone marrow.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2085-2085
Author(s):  
Michel Van Gelder ◽  
Peter Frings ◽  
Catarina Matos ◽  
Harry C. Schouten ◽  
Gerard M.J. Bos

Abstract Abstract 2085 Background: Patients with metastasized breast cancer cannot be cured by current standard treatment options. One hypothesis is that slow cycling chemo-resistant tumor stem cells give rise to new tumors after cytoreductive treatment, ultimately leading to chemoresistant tumors. Last year we showed that the 4T1 mouse breast cancer model contains slow-cycling chemo-resistant cells that induce renewed growth of the tumor after chemo- and radiotherapy (abstract 4082). We also showed that haploidentical spleen and bone marrow transplantation (BMT) cures the mice and that donor NK cells are a prerequisite. Our current aim was to study the need of long term BM engraftment and to study the role of the conditioning in the curative process. Methods: The 4T1 breast cancer cell line, originating from a spontaneous Balb/c (H-2d) breast cancer, was cultured under standard conditions. Fifty thousand 4T1 cells were injected s.c. in the flank. For the experiments addressing the need for haploidentical BMT tumor bearing CB6F1 (H-2b/d) recipients were treated with 2x 2Gy total body irradiation and 200 mg/kg cyclophosphamide (CY+TBI) followed by in vitro NK cell enriched haploidentical B6CBAF1 (H-2b/k) spleen cell infusion with or without additional BM cells. Chimerism in tumor-free surviving recipients was measured by flowcytometry of spleens at least 100 days after the treatment. The role of the conditioning in the alloreactive NK cell effect was studied in fully H-2 mismatched B6CBAF1 mice. When indicated, in vivo NK cell depletion was by i.p. injection of anti-AsialoGM1. Results: Figure A shows overall survival of mice with breast cancer after various treatments (10 mice per group). Haploidentical BMT plus spleen cells cured 50% of tumor bearing mice after CY+TBI (♦, dashed line) and survival was at least as good when NK cell enriched spleen cells were co-transplanted (▴, solid line). Transplantation of spleen cells from NK cell depleted mice (•, dotted line) obliterated the beneficial effect of haploidentical transplantation and resulted is similar poor survival as syngeneic BMT plus spleen cells (▪, solid line). The majority of mice that received NK cell enriched spleen cells (10 out of 14 tested) had no bone marrow engraftment and in the other four only 1–5% donor cells were detectable at 150 days. Recipients of unmanipulated haploidentical spleen and BM cells had >90% donor chimerism in 10 out of 14 tested. The cure rate in both groups was nevertheless similarly high. In a subsequent experiment (Figure B, 10 mice per group) we infused haploidentical NK cells only after CY+TBI (▴, solid line); other groups received T cell depleted (x, solid line) or T cell replete (♦, solid line) haploidentical BMT, or syngeneic BMT (▪, solid line). This resulted in a similar superior tumor-free survival (80-90%) than in mice co-transplanted with haploidentical BM (90%), as compared with syngeneic BM and spleen cell transplantation (•, dotted line). We then planned to study the role of the conditioning in the curative process. For this purpose 4T1 breast cancer cells were injected in fully H-2 mismatched B6CBAF1 mice (H-2b/k). Surprisingly, 4T1 breast cancer is not rejected by B6CBAF1 mice despite the full MHC mismatch. Tumors are only rejected when the mice were treated with CY+TBI. Tumor rejection proved to be NK cell dependant and not a direct result of the conditioning as it was prevented by in vivo NK cell depletion. Conclusions: This report provides the first evidence that chemo resistant tumor cells can be eliminated in vivo by alloreactive NK cells resulting in cure without the need for long term donor bone marrow engraftment. Conditioning with CY+TBI seems essential for this effect. These results set the stage for the exploration of alloreactive NK therapy in patients with metastasized breast cancer. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1865-1865
Author(s):  
Inger S. Nijhof ◽  
Michel de Weers ◽  
Pascale Andre ◽  
Berris van Kessel ◽  
Henk M. Lokhorst ◽  
...  

Abstract Abstract 1865 Despite significant improvements in the treatment of multiple myeloma (MM), this progressive malignancy of antibody-producing clonal plasma cells is still considered incurable. New innovative treatments need to be developed to improve long term outcomes. Recent successes of CD20 antibodies in the clinical lymphoma management indicate that targeted immunotherapy can represent a powerful therapeutical strategy for hematological malignancies. Towards developing a similar strategy for MM, we have recently generated a novel human monoclonal antibody, daratumumab (DARA), which targets the CD38 molecule expressed at high levels on MM cells. We have demonstrated that DARA mediates the lysis of CD38+ MM cells via direct apoptosis, complement mediated lysis and antibody-dependent cell mediated cytotoxicity (ADCC). Natural killer (NK) cells appeared important effector cells mediating the ADCC effect. Since NK cell activity against tumor cells is regulated by the balance of signals generated by inhibitory or activating receptors of NK cells (KIRs), we now explored whether blocking the inhibitory KIRs would improve the NK cell mediated DARA dependent lysis of MM cells. Thus, we evaluated the potential benefits of combining DARA with a novel human anti KIR monoclonal antibody, IPH2102, which blocks the inhibitory KIR2DL1/2/3 receptors (HLA-C specific KIRs), and has been shown to augment NK cell function against MM cells. We recently developed FACS-based ex vivo MM cell lysis assays, in which DARA-dependent NK cell-mediated lysis of MM cells can be directly measured in bone marrow MNCs, thus without separating the malignant cells from autologous NK cells and other accessory cells. Using these, we investigated whether the addition of IPH2102 would augment the DARA dependent lysis of MM cells. As expected, DARA induced lysis of MM cells in bone marrow MNCs isolated from MM patients (n=10). Mean lysis at 10 μg/ml DARA was 27.6% (range 11.3–48.1%). IPH2102 showed little or no lysis of MM cells (at 0.3, 1, 3 and 10 μg/ml) in this setting. The combination of 10 μg/ml IPH2102 with 3 and 10 μg/ml DARA significantly enhanced cytotoxicity against primary MM tumor cells compared to DARA alone (p=0.013 and p=0.028 respectively). Mean lysis of MM tumor cells at 10 μg/ml DARA and 10 μg/ml IPH2102 was 38%. These data confirm our previous findings that NK-cell mediated killing is an important mechanism of action of DARA. We demonstrate a clear synergy between DARA and IPH2102 to achieve effective lysis of MM cells directly in the bone marrow MNC of MM patients, indicating that complementary effects may be achieved by combining IPH2102 and DARA in clinical MM management. Disclosures: Weers: Genmab: Employment. Andre:Innate Pharma: Employment. Lokhorst:Genmab: Research Funding. Parren:Genmab: Employment. Morel:Innate Pharma: Employment. Mutis:Genmab: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3004-3004
Author(s):  
Kathrin Meinhardt ◽  
Ruth Bauer ◽  
Irena Kroeger ◽  
Julia Schneider ◽  
Franziska Ganss ◽  
...  

Abstract Abstract 3004 Clinical studies exploiting the impact of natural killer (NK) cells in allogeneic hematopoietic stem cell transplantation (HSCT) have provided promising results. It is known that NK cells are a heterogeneous population and can be divided into functionally distinct NK cell subpopulations. Murine NK cells can be separated along their expression of CD27 and CD11b and CD117 (c-kit). However, the functional relevance of distinct NK cell subsets in graft-versus-host-disease (GVHD) has not been investigated in detail so far. We have established different protocols for ex vivo isolation and expansion of murine NK cell subpopulations. These NK subsets were further analyzed in vitro and in vivo in an allogeneic murine GVHD model. Here we report on different genomic, phenotypic and functional properties of 4 NK cell subsets. Our data clearly demonstrate that CD27+ NK cells revealed the highest IFN-g production upon coculture with tumor cells and/or IL-2. Interestingly, the CD11b+ NK cells express multiple genes of cytotoxic pathways and develop the highest cytotoxic capacity towards tumor cells. We observed up to 60% tumor lysis by CD27- CD11b+ NK cells compared to 40–45% by CD27+ CD11b+, about 25% by CD27+ CD11b- and 10% by c-kit+ CD11b- NK cells at an effector-target ratio of 5:1, respectively. Furthermore, the CD11b+ NK cell subset significantly reduced T cell proliferation induced by allogeneic dendritic cells in mixed lymphocytes reactions. Next, we analyzed the migratory capacity and tissue-specific homing of FACS-sorted NK cell subsets by adoptive transfer of congeneic CD45.1+ and Luc+ NK cell subpopulations in autologous and allogeneic bone marrow transplantation. Of interest, FACS analysis and in vivo imaging showed that CD11b+ NK cells migrated to peripheral GVHD target organs, whereas CD27+ NK cells preferentially homed to the bone marrow. Finally, this study addressed for the first time the role of distinct NK cell subpopulations in the development of GVHD in a fully MHC mismatched HSCT mouse model. Importantly, we identified the CD11b+ NK cell population as the NK cell subset that significantly diminished GVHD. In vivo imaging of Luc+CD11b+ NK cells revealed that this subset migrates to the colonic tissue to prevent development of GVHD colitis as shown by colonoscopy. In summary, our comparative study outlines that only CD11b+ NK cells, migrating to the peripheral GVHD target organs and providing the most efficient cytolytic capacity directed against allogeneic dendritic cells, protect against GVHD. These new insights are highly relevant for the selection of optimal NK cell subsets in the field of cellular immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 580-580
Author(s):  
Mark Wunderlich ◽  
Mahesh Shrestha ◽  
Lin Kang ◽  
Eric Law ◽  
Vladimir Jankovic ◽  
...  

Abstract Abstract 580 Generating a large number of pure, functional immune cells that can be used in human patients has been a major challenge for NK cell-based immunotherapy. We have successfully established a cultivation method to generate human NK cells from CD34+ cells isolated from donor-matched cord blood and human placental derived stem cells, which were obtained from full-term human placenta. This cultivation method is feeder-free, based on progenitor expansion followed by NK differentiation supported by cytokines including thrombopoietin, stem cell factor, Flt3 ligand, IL-7, IL-15 and IL-2. A graded progression from CD34+ hematopoietic progenitor cells (HSC) to committed NK progenitor cells ultimately results in ∼90% CD3-CD56+ phenotype and is associated with an average 10,000-fold expansion achieved over 35 days. The resulting cells are CD16- and express low level of KIRs, indicating an immature NK cell phenotype, but show active in vitro cytotoxicity against a broad range of tumor cell line targets. The in vivo persistence, maturation and functional activity of HSC-derived NK cells was assessed in NSG mice engineered to express the human cytokines SCF, GM-CSF and IL-3 (NSGS mice). Human IL-2 or IL-15 was injected intraperitoneally three times per week to test the effect of cytokine supplementation on the in vivo transferred NK cells. The presence and detailed immunophenotype of NK cells was assessed in peripheral blood (PB), bone marrow (BM), spleen and liver samples at 7-day intervals up to 28 days post-transfer. Without cytokine supplementation, very few NK cells were detectable at any time-point. Administration of IL-2 resulted in a detectable but modest enhancement of human NK cell persistence. The effect of IL-15 supplementation was significantly greater, leading to the robust persistence of transferred NK cells in circulation, and likely specific homing and expansion in the liver of recipient mice. The discrete response to IL-15 versus IL-2, as well as the preferential accumulation in the liver have not been previously described following adoptive transfer of mature NK cells, and may be unique for the HSC-derived immature NK cell product. Following the in vivo transfer, a significant fraction of human CD56+ cells expressed CD16 and KIRs indicating full physiologic NK differentiation, which appears to be a unique potential of HSC-derived cells. Consistent with this, human CD56+ cells isolated ex vivo efficiently killed K562 targets in in vitro cytotoxicity assays. In contrast to PB, spleen and liver, BM contained a substantial portion of human cells that were CD56/CD16 double negative (DN) but positive for CD244 and CD117, indicating a residual progenitor function in the CD56- fraction of the CD34+ derived cell product. The BM engrafting population was higher in NK cultures at earlier stages of expansion, but was preserved in the day 35- cultured product. The frequency of these cells in the BM increased over time, and showed continued cycling based on in vivo BrdU labeling 28 days post-transfer, suggesting a significant progenitor potential in vivo. Interestingly, DN cells isolated from BM could be efficiently differentiated ex vivo to mature CD56+CD16+ NK cells with in vitro cytotoxic activity against K562. We speculate that under the optimal in vivo conditions these BM engrafting cells may provide a progenitor population to produce a mature NK cell pool in humans, and therefore could contribute to the therapeutic potential of the HSC-derived NK cell product. The in vivo activity of HSC-derived NK cells was further explored using a genetically engineered human AML xenograft model of minimal residual disease (MRD) and initial data indicates significant suppression of AML relapse in animals receiving NK cells following chemotherapy. Collectively, our data demonstrate the utility of humanized mice and in vivo xenograft models in characterizing the biodistribution, persistence, differentiation and functional assessment of human HSC-derived cell therapy products, and characterize the potential of HSC-derived NK cells to be developed as an effective off-the-shelf product for use in adoptive cell therapy approaches in AML. Disclosures: Wunderlich: Celgene Cellular Therapeutics: Research Funding. Shrestha:C: Research Funding. Kang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Law:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Jankovic:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Zhang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Herzberg:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Abbot:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Hariri:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Mulloy:Celgene Cellular Therapeutics: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3781-3781
Author(s):  
Eolia Brissot ◽  
Sawa Ito ◽  
Kit Lu ◽  
Carly Cantilena ◽  
B. Douglas Smith ◽  
...  

Abstract Adult acute lymphoblastic leukemia (ALL) remains a therapeutic challenge with less than 40% long term survival. There is growing evidence that malignant diseases exert an “immune editing” effect which blocks antitumor immunity and permits tumor growth through immune evasion. Such tumor escape represents an obstacle for anticancer immunotherapy. In ALL such immune escape mechanisms are not well characterized. We therefore profiled cellular immunity in ALL, by characterizing the subsets of T cells, regulatory T cells (Treg), natural killers (NK) cells and γd T cells, using various functional markers including T cell exhaustion and NK cell activating or inhibitory molecules. Forty ALL patients were included in the study. The median age was 39 y (range, 18-75). Thirty-six presented with B-lineage ALL and 4 with T-lineage ALL. Mononuclear cells were isolated from blood (n=19) or bone marrow (n=21) at the onset of leukemia or at relapse. The median infiltration of blasts was 85% (range 24-96%). Healthy donor peripheral blood (n=12) and bone marrow (n=9), from age and gender matched population, were simultaneously analyzed as controls. Extra-and intra cellular staining were performed using using antibodies directed against CD3, CD4, CD8, CD45, CD45, CD45RA, CD45RO, CCR7, CD95, CD27, CD19, CD14, CD127, CD25, Foxp3, Helios, αβTCR, HLA-DR, CD117, CD20, CD10, CD22, CD34, LAG3, PD1, PDL1, CD56, NKG2A, NKG2C, NKG2D, KIR2DL1, KIR2DL3, CD57, CD33, CD11b, CD15, CD38 and CD24. Data were acquired on a BD LSRFORTESSA flow cytometer. The expression of programmed cell death 1 (PD-1, CD279) receptor on CD8+T cells was significantly increased in blood and bone marrow of ALL patients compared to healthy donors (p<0.0001 and p=0.004, respectively) (Fig. 1). Focusing on the different subsets, CD8+ effector memory T cells significantly over-expressed PD-1 in blood and bone marrow of ALL patients compared to healthy donors (p=0.008 and p=0.04, respectively). Moreover, there was a significant positive correlation between PD-1 expression on CD8+ effector memory T cells and blast infiltration (R2=0.23, 95%CI 0.026-0.76, p=0.04). Expression of the co-inhibitory receptor lymphocyte-activation gene 3 (LAG-3, CD223) was similar in ALL patients compared to healthy donors. A significantly higher frequency of T regulators (CD25+, CD127 low, Foxp3+) was found in bone marrow microenvironment in ALL patients (4.3% versus 1.6%, p=0.02). Concerning γd T cells, frequency was similar in blood and bone marrow of ALL patients compared with healthy donors. There was a significantly lower frequency of CD56dimNKG2A+KIR-CD57- (p=0.02) in the bone marrow of ALL patients indicating a maturation arrest. Interestingly, expression of the activating receptor NKG2D which plays an important role in triggering the NK cell–mediated tumor cell lysis was significantly reduced in NK cells of ALL patients while no difference in NK cell expression of NKG2C was found(Fig. 2). Adult patients with ALL show evidence of immune-editing of T cells and NK cells. This global immunosuppressive mechanism may contribute to the eventual escape of ALL from immune control. PD-1, overexpression, described in acute myeloid leukemia and chronic myeloid leukemia has been implicated in T-cell exhaustion and subsequent tumor immune evasion. Our data suggests similar immune escape mechanisms pertain in ALL. Effective antileukemia immunotherapy will require targeting one or more of these immunosuppressive pathways to achieve optimum results. Disclosures Fathi: Seattle Genetics, Inc.: Consultancy, Research Funding; Takeda pharmaceuticals International Co.: Research Funding; Exelixis: Research Funding; Ariad: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3090-3090 ◽  
Author(s):  
Folashade Otegbeye ◽  
Nathan Mackowski ◽  
Evelyn Ojo ◽  
Marcos De Lima ◽  
David N. Wald

Abstract Introduction: A crucial component of the innate immune response system, natural killer (NK) cells are uniquely competent to mediate anti-myeloid leukemia responses. NKG2D is an activating receptor on the surface of NK cells that engages stress ligands MICA and MICB, typically upregulated on myeloid leukemia cells. Adoptive transfer of NK cells is a promising treatment strategy for AML. Strategies to optimize the anti-leukemia effect of NK cell adoptive transfer are an area of active research. These include attempts to enhance NK cell activity and to maintain the activation status and proliferation of the NK cells in vivo. Traditionally, IL-2 has been used to maintain the in vivo proliferation of adoptively transferred NK cells, but it leads to unwanted proliferation of regulatory T cells and suboptimal NK cell proliferation. IL-15 may be superior to IL-2, without the effects on T regulatory cells. The IL-15 superagonist, ALT-803 exhibits >25 fold enhancement in biological activity as compared to IL-15. ALT-803 is a fusion protein of an IL-15 mutant and the IL-15Rα/Fc complex that has recently entered clinical trials as a direct immunomodulatory agent in cancer clinical trials We hypothesized ALT-803 would augment the activity and/or proliferation of adoptively transferred NK cells in vitro and in a mouse model system.. Methods: Human NK cells were isolated from healthy donor peripheral blood and were expanded over a 21-day period in co-culture with irradiated K562 cells genetically modified to express membrane-bound IL-21. (Somanchi et al. 2011 JoVE 48. doi: 10.3791/2540) The NK cells were expanded with IL-2 (50mU/mL) and/or ALT-803 (200ng/mL). On Day 21, NK cells were examined for cytotoxicity against AML cells as well as by flow cytometry for expression of known activating receptors. An NSG murine xenograft model of human AML was developed to test the in vivo function of NK cells expanded above. Briefly, NSG mice (n=5 per group) were non-lethally irradiated and each injected IV with 5 x106 OCI-AML3 leukemic cells. Two days later, each mouse received weekly NK cell infusions for 2 weeks. Mice that received NK cells expanded with IL2 got cytokine support with IL-2 (75kU IP three times a week). Mice infused with ALT-803 expanded cells (alone or in combination with IL2) received ALT-803 (0.2mg/kg IV weekly). One control group received OCI cells but were infused weekly only with 2% FBS vehicle, no NK cells. Leukemic burden in each mouse was assessed by flow cytometry of bone marrow aspirates on day 28 following start of NK cell infusions). This time point was chosen as the control mice appeared moribund. Results: ALT-803 did not have any differential effect on the proliferation of the NK cells ex vivo as compared to IL-2. However, the presence of ALT-803 either alone or in combination with IL-2 resulted in a significant increase (30% increase, p<0.0001) in the cytotoxic activity of the NK cells against leukemia cells as compared with IL-2 alone in vitro (figure 1). In addition, the percentages of NK cells that express the activating receptor NKG2D as well as CD16 were significantly higher (p<0.001 for both) after ALT-803 exposure (figure 1). Finally, in the murine xenograft AML model, ALT-803 expanded NK cells, which were also supported in vivo with ALT-803, resulted in an 8-fold reduction in disease burden in the bone marrow (p<0.0001). Importantly the efficacy of NK cells in the ALT-803 injected mice was significantly higher (3-fold, p= 0.0447) than IL-2 treated mice (figure 2). Discussion: Our results suggest that the presence of ALT-803 during ex-vivo expansion of NK cells results in increased activation and cytotoxicity against AML cells. In addition our results using a murine model of human AML show that the use of ALT-803 in combination with adoptively transferred NK cells provides a significant anti-leukemic benefit as compared to IL-2. Future studies to test larger panels of leukemia cells as well as other cancer cell lines are currently in progress. It is hoped that this work will lead to an improvement in the efficacy of adoptively transferred NK cells for AML patients due to an improvement in survival and activity of the NK cells. Disclosures Wald: Invenio Therapeutics: Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1566-1566
Author(s):  
Cathelijne Fokkema ◽  
Madelon M.E. de Jong ◽  
Sabrin Tahri ◽  
Zoltan Kellermayer ◽  
Chelsea den Hollander ◽  
...  

Abstract Introduction The introduction of new treatment regimens has significantly increased the progression free survival (PFS) of newly diagnosed multiple myeloma (MM) patients. However, even with these novel treatments, for some the disease remains refractory, highlighting the need to identify the pathobiology of high-risk MM. In MM patients, high levels of circulating tumor cells (CTCs) is associated with an inferior prognosis independent of high-risk cytogenetics (Chakraborty et al., 2016), suggesting that CTC numbers are a relevant reflection of tumor cell biology. We hypothesized that high levels of CTCs in MM patients are either the result of a transcriptionally distinct tumor clone with enhanced migration capacities, or driven by transcriptional differences present in the bone marrow (BM) tumor cells. To test these hypotheses, we 1) compared MM cells from paired blood and BM samples, and 2) compared BM tumor cells of patients with high and low CTC levels, using single cell RNA-sequencing. Results We isolated plasma cell (PCs) from viably frozen mononuclear cells of paired peripheral blood (PB) and BM aspirates from five newly diagnosed MM patients (0.5%-8% CTCs) to determine the presence of a distinct CTC subclone. We generated single cell transcriptomes from 44,779 CTCs and 35,697 BM PCs. In the total 9 clusters common to BM PCs and CTCs were identified upon single cell data integration, but no cluster specific for either source was detected. Only 25 genes were significantly differential expressed between CTCs and BM PCs. The absence of transcriptional clusters unique to either CTCs or BM PCs, and the transcriptional similarity between these two anatomical sites makes it highly unlikely that CTC levels are driven by the presence of a transcriptionally-primed migratory clone. We next set out to identify possible transcriptional differences in BM PCs from eight patients with high (2-22%) versus thirteen patients with low (0.004%-0.08%) percentages of CTCs. Recurrent high-risk mutations were present in both groups. Single cell transcriptomes were generated from 74,830 BM PCs. Single cell data integration across all patients led to the identification of 8 distinct PC clusters, one of which was characterized by enhanced proliferation as defined by STMN1 and MKI67 transcription. Interestingly, this proliferative cluster was increased in patients with a high percentage of CTCs. Furthermore, cell cycle analyses based on canonical G2M and S phase markers revealed that actively cycling PCs were more frequent in the BM of patients with a high percentage of CTCs (64% versus 30%, p&lt;0.001), irrespective of the transcriptional cluster of origin. We hypothesized that plasma cell-extrinsic cues from the bone marrow micro-environment might be driving tumor proliferation. In order to substantiate this, we isolated BM immune cells from the same 21 patients and generated a library of 301,045 single immune cell transcriptomes. This library contained all major immune cell subsets, including CD4 + and CD8 + T cells, NK cells, B cells and monocytes. Comparative analyses of these cell populations in patients with either high or low levels of CTC are ongoing. Conclusion Through single cell transcriptomic analyses, we demonstrate that CTCs and BM PCs are transcriptionally similar. Importantly, we identify increased BM PC proliferation as a significant difference between patients with high and low levels of CTCs, implicating an increased tumor proliferation as one of the potential mechanisms driving CTC levels and MM disease pathobiology. The relation of the BM immune micro-environment to this altered proliferative state is currently under investigation. Disclosures van der Velden: Janssen: Other: Service Level Agreement; BD Biosciences: Other: Service Level Agreement; Navigate: Other: Service Level Agreement; Agilent: Research Funding; EuroFlow: Other: Service Level Agreement, Patents & Royalties: for network, not personally. Sonneveld: SkylineDx: Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; Celgene/BMS: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding. Broyl: Sanofi: Honoraria; Janssen Pharmaceuticals: Honoraria; Celgene: Honoraria; Bristol-Meyer Squibb: Honoraria; Amgen: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document